# Goal-seek of a large sum equation?

GROUPS:
 I'm looking to take a sum program that I've written and add up a series of terms to get to a specific mass that I can arbitrarily decide. I've written the code up to a multiple sum equation, but what I want to know is if there is a simple way of picking out parts of the sum that are, say, within 5% of a target value? I will paste the code below if that helps. Clear["Global'*"]; h1 = 1.007825; h1p = 100; li7 = 7.016004; li7p = 92.41; b10 = \ 10.01294; b10p = 19.9; b11 = 11.00931; b11p = 80.1; c12 = 12.01; c12p \ = 98.93; c13 = 13.00336; c13p = 1.07; n14 = 14.00307; n14p = 99.632; \ o16 = 15.99492; o16p = 99.757; f19 = 18.9984; f19p = 100; na23 = \ 22.98977; na23p = 100; mg24 = 23.98584; mg24p = 78.99; mg25 = \ 24.98584; mg25p = 10; mg26 = 25.98259; mg26p = 11.01; p31 = 30.97376; \ p31p = 100; s32 = 31.97207; s32p = 94.93; s34 = 33.96787; s34p = \ 4.29; cl35 = 34.96885; cl35p = 75.78; cl37 = 36.9659; cl37p = 24.22; \ k39 = 38.96371; k39p = 93.2581; k41 = 40.96183; k41p = 6.7302; ca40 = \ 39.96259; ca40p = 96.941; ca44 = 43.95548; ca44p = 2.086; mn55 = \ 54.93805; mn55p = 100; fe54 = 53.93962; fe54p = 5.845; fe56 = 55.93494; fe56p = 91.754; fe57 = 56.9354; fe57p \ = 2.119; se76 = 75.91921; se76p = 9.37; se77 = 76.91992; se77p = \ 7.63; se78 = 77.91731; se78p = 23.77; se80 = 79.91652; se80p = 49.61; \ se82 = 81.9167; se82p = 8.73; br79 = 78.91834; br79p = 50.69; br81 = \ 80.91629; br81p = 49.31; suspect = nh1 h1 + nli7 li7 + nb10 b10 + nb11 b11 + nc12 c12 + nc13 c13 + nn14 n14 + no16 o16 + nf19 f19 + nna23 na23 + nmg24 mg24 + nmg25 mg25 + nmg26 mg26 + np31 p31 + ns32 s32 + ns34 s34 + ncl35 cl35 + ncl37 cl37 + nk39 k39 + nk41 k41 + nca40 ca40 + nca44 ca44 + nmn55 mn55 + nfe54 fe54 + nfe56 fe56 + nfe57 fe57 + nse76 se76 + nse77 se77 + nse78 se78 + nse80 se80 nse82 se82 + nbr79 br79 + nbr81 br81; sniffer = Sum[suspect, {nh1, 0, 5, 1}, {nli7, 0, 5, 1}, {nb10, 0, 5, 1}, {nb11, 0, 5, 1}, {nc12, 0, 5, 1}, {nc13, 0, 5, 1}, {nn14, 0, 5, 1}, {no16, 0, 5, 1}, {nf19, 0, 5, 1}, {nna23, 0, 5, 1}, {nmg24, 0, 2, 1}, {nmg25, 0, 2, 1}, {nmg26, 0, 2, 1}, {np31, 0, 2, 1}, {ns32, 0, 2, 1}, {ns34, 0, 2, 1}, {ncl35, 0, 2, 1}, {ncl37, 0, 2, 1}, {nk39, 0, 2, 1}, {nk41, 0, 2, 1}, {nca40, 0, 2, 1}, {nca44, 0, 2, 1}, {nmn55, 0, 2, 1}, {nfe54, 0, 2, 1}, {nhfe56, 0, 2, 1}, {nhfe57, 0, 2, 1}, {nse76, 0, 2, 1}, {nse77, 0, 2, 1}, {nse78, 0, 2, 1}, {nse80, 0, 2, 1}, {nse82, 0, 2, 1}, {nse79, 0, 2, 1}, {nse81, 0, 2, 1}] 
Answer
9 months ago