# [✓] Plot this gaussian function?

GROUPS:
 Joe Donaldson 1 Vote Consider the following code:  gauss[x_] := E^(-x*x) sinc[x_] := Sinc[x] Plot[gauss[x], {x, -5, 5}, PlotRange -> All] Plot[sinc[x], {x, -5, 5}, PlotRange -> All] Plot[Convolve[gauss[x], sinc[x], x, y], {y, -5, 5}, PlotRange -> All] The first two plots look good, but it's been evaluating the final plot for an hour now, and I don't remember it working when I tried a few months ago. Incidentally, this doesn't evaluate to any close form: Convolve[gauss[x], sinc[x], x, y] What strategies can I try to get a plot of it?
1 year ago
9 Replies
 Bill Simpson 2 Votes Will a quick rough approximation help? (Tweak the constants if needed) ListPlot[Table[{y, NIntegrate[gauss[x] sinc[y-x],{x,-40,40}]},{y,-40,40,1/4}],PlotRange->All,Joined->True] 
1 year ago
 Yes, that definitely helps. Thanks.
1 year ago
 Neil Singer 1 Vote Joe,While Bill's solution is excellent, another alternative is to do the convolution digitally: gd = gauss@Range[-40, 40, .25]; sd = sinc@Range[-40, 40, .25]; ListLinePlot[ListConvolve[gd, sd, (Length[gd] - 1)/2], PlotRange -> All] getting the same plot.Regards
1 year ago
 Thanks. I'm grateful for the solutions, but I'm still curious what was wrong with my attempt?I understand that the convolution entails integration which Mathematica can't put into closed form, so it's a tough problem, but I'd thought in that case Mathematica would recognize the difficulty and switch to numerical estimation? In other words, I'd thought Mathematica would automatically do something like what you've both shown me how to do manually.Admittedly, I haven't studied the Plot options lately, so I might have overlooked something in there.
1 year ago
 Neil Singer 1 Vote Edited version -- I grabbed the wrong plot and forgot the Fourier ConstantJoe,Mathematica can Solve it exactly by using the FourierTransform: In[81]:= ga = FourierTransform[E^(-x*x), x, w] Out[81]= E^(-(w^2/4))/Sqrt[2] In[82]:= sa = FourierTransform[Sinc[x], x, w] Out[82]= 1/2 Sqrt[\[Pi]/2] (Sign[1 - w] + Sign[1 + w]) In[84]:= ans = Sqrt[2*Pi]*InverseFourierTransform[ga*sa, w, x] Out[84]= 1/2 E^-x^2 \[Pi] (Erf[1/2 - I x] + Erf[1/2 + I x]) In[86]:= Plot[ans, {x, -40, 40}, PlotRange -> All] To get:This relies on the relationship that the Convolution of two functions is the InverseFourierTransform of the multiplication of their FourierTransforms (with the appropriate constant which depends on the definition of Fourier Transform that you use -- in Mathematica it is Sqrt[2*Pi] unless you change options).
1 year ago
 Neil Singer 1 Vote Oops, I forgot the scale factor. I'll fix it later when I get back to my machine.--Fixed above.
 Please don't worry about the scale-factor on my account. I understand the relation between fourier-xform and convolution, and am fairly familiar with the Gaussian and Sinc functions.Why doesn't this direct method yield the results you obtained indirectly by using FourierTransform? gauss[x_] := E^(-x*x) sinc[x_] := Sinc[x] Convolve[gauss[x], sinc[x], x, y] Why did my original attempt fail? I want to understand why the workarounds are necessary instead. (Mostly I wanted to get a plot, but now that I have a good plot, I'm curious why the direct method fails.)
 Neil Singer 1 Vote Joe, You raise a good point that it was fairly easy for me to get the closed form solution to the Convolution using the Fourier Transform -- I am surprised that the Convolve function does not try to do this as part of its internal algorithm. Maybe someone at Wolfram can shed light on this. I fixed the errors I made so this thread will be more useful to people searching in the future. One other point: -- even if Convolve would have been able to solve for the closed form solution, I would recommend against your Plot command:Plot[Convolve[gauss[x], sinc[x], x, y], {y, -5, 5}, PlotRange -> All] Doing the plot this way forces Mathematica to recompute the closed form solution each time a point is plotted and could be very slow. You are better off doing: ans= Convolve[...] Plot[ans, {y, -5, 5}, PlotRange -> All] This solves the (difficult) calculation once and then substitutes in values.Regards