# Plot special functions real and imaginary part?

GROUPS:
 Consider the following code: 0F1[;1;j*pi/2x]*e^j2*pi*x x[-pi/2,+pi/2] The task is to visualize the real and imaginary part here is how i tried it what has to be different?besides i need the first three derivatives it didnt work like that Grid[ Partition[ Table[ Plot[ Evaluate[{Re[ D[Hypergeometric0F1[ 1, (\[ImaginaryJ]*\[Pi]/2*x)*E^j2\[Pi]x], {x, i}]], Im[D[ Hypergeometric0F1[ 1, (\[ImaginaryJ]*\[Pi]/2*x)*E^j2\[Pi]x], {x, i}]]}], {x, -2/\[Pi], 2/\[Pi]}, PlotRange -> Automatic, Frame -> True, GridLines -> Automatic, AspectRatio -> 1, FrameLabel -> {"x", StringForm[ "\!$$\*SubscriptBox[\(\[InvisiblePrefixScriptBase]$$, $$0$$]\)\ \!$$\*SubscriptBox[OverscriptBox[\(F$$, $$~$$], $$1$$]\)^()(\ \[ImaginaryJ]*\[Pi]/2*x)*\!$$\*SuperscriptBox[\(\[ExponentialE]$$, \ $$j2\[Pi]x$$]\)"]}, PlotLegends -> Placed[{"Re", "Im"}, {Center, Top}], ImageSize -> 300], {i, 0, 3}], 2], Frame -> All]  Attachments:
 Had you used the I to denote the imaginary unit (instead of the j you took, which is okay only in comments), it had worked like a charme as seen here
 Grid[ Partition[ Table[ Plot[ Evaluate[{Re[ D[Hypergeometric0F1[1, (I*\[Pi]/2*x)*Exp[I 2 \[Pi] x]], {x, i}]], Im[D[ Hypergeometric0F1[1, (I*\[Pi]/2*x)*Exp[I 2 \[Pi] x]], {x, i}]]}], {x, -2/\[Pi], 2/\[Pi]}, PlotRange -> Automatic, Frame -> True, GridLines -> Automatic, AspectRatio -> 1, FrameLabel -> {"x", StringForm[ "\!$$\*SubscriptBox[\(\[InvisiblePrefixScriptBase]$$, $$0$$]\)\ \!$$\*SubscriptBox[OverscriptBox[\(F$$, $$~$$], $$1$$]\)^()(\ \[ImaginaryJ]*\[Pi]/2*x)*\!$$\*SuperscriptBox[\(\[ExponentialE]$$, \ $$j2\[Pi]x$$]\)"]}, PlotLegends -> Placed[{"Re", "Im"}, {Center, Top}], ImageSize -> 300], {i, 0, 3}], 2], Frame -> All] Many thanks for your kind hint.