Message Boards Message Boards

Unequal length solution

GROUPS:

AT the bottom the graphic resolves to spiral down inwards the numbers to try to make it parallel to the numbers with unequal length.

a=RandomInteger[200,{200}]
n=RandomReal[200,{300}]
a1=RandomChoice[a,{40}]
Take[a,-1]
b=RandomChoice[a,{60}]
b1=Take[b,-1]
c=RandomChoice[a,{40}]
c1=Take[c,-1]
d=RandomChoice[a,{80}]
d1=Take[d,-1]
e=RandomChoice[a,{20}]
e1=Take[e,-1]
f=RandomChoice[a,{20}]
f1=Take[f,-1]
g=RandomChoice[a,{20}]
g1=Take[g,-1]
h=RandomChoice[a,{20}]
h1=Take[h,-1]
i=RandomChoice[a,{20}]
i1=Take[i,-1]
aa= RandomChoice[a,{20}]
aa1=Take[aa,-1]
bb=RandomChoice[a,{20}]
bb1=Take[bb,-1]
cc=RandomChoice[a,{20}]
cc1=Take[cc,-1]
dd=RandomChoice[a,{20}]
dd1=Take[dd,-1]
ee=RandomChoice[a,{20}]
ee1=Take[ee,-1]
ff=RandomChoice[a,{20}]
ff1=Take[ff,-1]
gg=RandomChoice[a,{20}]
gg1=Take[gg,-1]
hh=RandomChoice[a,{20}]
hh1=Take[hh,-1]
ii=RandomChoice[a,{20}]
ii1=Take[ii,-1]

fg[Flatten_]:=Module Flatten[p]->p[p]->{p}=p While[Length [p<Infinity],p=Flatten[p]];
Parallelize[Map[Flatten,Range[200,200]]]
k=Union[{a1},{b1},{c1},{d1},{e1},{f1},{g1},{h1},{i1}]
1a=Flatten[RandomChoice[k,{9}]]
kk=Union[{aa1},{bb1},{cc1},{dd1},{ee1},{ff1},{gg1},{hh1},{ii1}]
1b=Flatten[RandomChoice[kk,{9}]]
Unprotect[E_];[b_]
u=Solve[E==E*((1a^2)*(1b))+((1b^2)*(1a))/((1a)*(1b)),1a^2,1b,1b^2,1a]
E=E*((1a^2)*(1b))+((1b^2)*(1a))/((1a)*(1b))
Flatten[%]
E[1a_^2;1b_;1b_^2;1a_;1a_;1b_]:=Solve[E*(1a^2)*(1b)+(1b^2)*(1a)/(1a)*(1b)==E*(1a^2)*(1b)+((1b^2)*(1a))/((1a)*(1b))=E*(1a^2)*(1b)+((1b^2)*(1a))/((1a)*(1b))][E*((1a^2*1b)+(1b^2*1a))/(1a*1b),E*((1a^2*1b)+(1b^2*1a))/(1a*1b)]
Parallelize[Map[E,Range[20,20]]]
l=Table[E*((1a^2)*(1b))+((1b^2)*(1a))/((1a)*(1b)),{a,20},{b,30}]
p=Flatten[%]
m=MatrixForm[l]
MatrixPlot[Fourier[Table[UnitStep[a,4-a] UnitStep[b,7-b],{a,-50,50},{b,-50,50}]]]
m=ExampleData[{"Matrix","HB/west0381"},"Matrix"]
MatrixPlot[m]

ListPolarPlot[l]
ListPolarPlot[p]

enter image description here

.

Answer
2 months ago

enter image description here

Attachment

Attachments:
Answer
2 months ago

Group Abstract Group Abstract