Message Boards Message Boards

GROUPS:

Question on commutativity of Mellin convolution evaluations

Posted 1 year ago
574 Views
|
0 Replies
|
0 Total Likes
|

For the function f[x] defined in [1] below, evaluation [5] below is inconsistent with evaluations [2] to [4] below. Note the change in sign preceding y in evaluation [5] below.

In[1]:= f[x_] := DiracDelta'[x - 1]

In[2]:= MellinConvolve[f[x], h[x], x, y, GenerateConditions -> True]

Out[2]= h[y] + y Derivative[1][h][y]

In[3]:= MellinConvolve[h[x], f[x], x, y, GenerateConditions -> True]

Out[3]= h[y] + y Derivative[1][h][y]

In[4]:= Integrate[f[x] h[y/x] 1/x, {x, 0, \[Infinity]}, 
 GenerateConditions -> True]

Out[4]= h[y] + y Derivative[1][h][y]

In[5]:= Assuming[y > 0, 
 FullSimplify[
  Integrate[h[x] f[y/x] 1/x, {x, 0, \[Infinity]}, 
   GenerateConditions -> True]]]

Out[5]= h[y] - y Derivative[1][h][y]

Question 1: Does evaluation [5] above represent an error in the implementation of the Mathematica Integrate function?

For the function g[x] defined in [6] below, evaluations [7] and [8] below are inconsistent with evaluations [9] and [10] below. Note Mellin convolution is claimed to be commutative.

In[6]:= g[x_] := x DiracDelta'[x - 1]

In[7]:= MellinConvolve[g[x], h[x], x, y, GenerateConditions -> True]

Out[7]= y Derivative[1][h][y]

In[8]:= Integrate[g[x] h[y/x] 1/x, {x, 0, \[Infinity]}, 
 GenerateConditions -> True]

Out[8]= y Derivative[1][h][y]

In[9]:= MellinConvolve[h[x], g[x], x, y, GenerateConditions -> True]

Out[9]= 2 h[y] - y Derivative[1][h][y]

In[10]:= Assuming[y > 0, 
 FullSimplify[
  Integrate[h[x] g[y/x] 1/x, {x, 0, \[Infinity]}, 
   GenerateConditions -> True]]]

Out[10]= 2 h[y] - y Derivative[1][h][y]

Question 2: Do the discrepancies between evaluations [7] to [10] above represent errors in the Mathematica MellinConvolve and Integrate functions or is Mellin convolution not always commutative with respect to evaluations involving distributions?

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract