# Get the two missing terms when using Limit?

Posted 6 months ago
565 Views
|
3 Replies
|
0 Total Likes
|
 I use the command Limit, In[503]:= eq1 = cinf/(s - \[Theta]c) + ( Sqrt[Dc] E^((lh Sqrt[s])/Sqrt[Dc] - (Sqrt[s] x)/Sqrt[Dc]) F1)/( Sqrt[s] (s - \[Theta]c)) - (cinf \[Theta]c)/(s (s - \[Theta]c)) + ( E^((Sqrt[s] x)/Sqrt[Dc]) s a[1][s])/(s - \[Theta]c) + ( E^((2 lh Sqrt[s])/Sqrt[Dc] - (Sqrt[s] x)/Sqrt[Dc]) s a[1][s])/( s - \[Theta]c) - (E^((Sqrt[s] x)/Sqrt[Dc]) \[Theta]c a[1][s])/( s - \[Theta]c) - ( E^((2 lh Sqrt[s])/Sqrt[Dc] - (Sqrt[s] x)/Sqrt[Dc]) \[Theta]c a[1][ s])/(s - \[Theta]c) Out[503]= cinf/(s - \[Theta]c) + ( Sqrt[Dc] E^((lh Sqrt[s])/Sqrt[Dc] - (Sqrt[s] x)/Sqrt[Dc]) F1)/( Sqrt[s] (s - \[Theta]c)) - (cinf \[Theta]c)/(s (s - \[Theta]c)) + ( E^((Sqrt[s] x)/Sqrt[Dc]) s a[1][s])/(s - \[Theta]c) + ( E^((2 lh Sqrt[s])/Sqrt[Dc] - (Sqrt[s] x)/Sqrt[Dc]) s a[1][s])/( s - \[Theta]c) - (E^((Sqrt[s] x)/Sqrt[Dc]) \[Theta]c a[1][s])/( s - \[Theta]c) - ( E^((2 lh Sqrt[s])/Sqrt[Dc] - (Sqrt[s] x)/Sqrt[Dc]) \[Theta]c a[1][ s])/(s - \[Theta]c) In[504]:= eq2 = (Limit[Expand@eq23, x -> + \[Infinity], Assumptions -> {s > 0, Dc > 0}]) // Simplify // Normal Out[504]= \[Infinity] a[1][s] Please tell me where they are, cinf/(s - \[Theta]c)-((cinf \[Theta]c)/(s (s - \[Theta]c))) 
3 Replies
Sort By:
Posted 6 months ago
 This is very unclear. What specifically is the expected result?
 I'm not sure I follow, but maybe you mean something like this? In[4]:= Infinity+xxx Out[4]= Infinity If so, then yes, that's how infinity arithmetic behaves in the Wolfram Language.