# Plot z as a function of "a"?

Posted 6 months ago
510 Views
|
6 Replies
|
5 Total Likes
|
 How can I plot z as a function of "a"? z = Table[NIntegrate[Sin[a + b x], {x, -10, 10}], {b, 0, 5, 0.5}, {a, 0, 5, 0.5}]; ListPlot[z, Joined -> True, PlotRange -> All] 
6 Replies
Sort By:
Posted 6 months ago
 u = Integrate[Sin[a + b*x], {x, -10, 10}]; {Plot3D[u, {a, 0., 5}, {b, 0.0001, 5}, PlotRange -> All, Mesh -> None, ColorFunction -> Hue, AxesLabel -> {"a", "b", ""}], Plot[u /. b -> 1, {a, 0, 5}, AxesLabel -> Automatic]} 
Posted 6 months ago
 Hey. Thank you a lot. Why did you replace NIntegrate with Integratre?
Posted 6 months ago
 In[1]:= u = Integrate[Sin[a + b*x], {x, -10, 10}] Out[1]= (2 Sin[a] Sin[10 b])/b 
Posted 6 months ago
 Yes, but this function is just a simple example. My original function is more complicated, so I need NIntegrate.
 OK! Let me take a look at the general cases on this particular example: u = Flatten[ Table[{a, b, NIntegrate[Sin[x^a - x^b], {x, 1, 2}]}, {a, 1, 2, .1}, {b, 3, 4, .1}], 1]; ListPlot3D[u, AxesLabel -> {"a", "b", ""}, Mesh -> None, ColorFunction -> Hue]  Fu = Interpolation[u] {Plot[Fu[a, 3.5], {a, 1, 2}, AxesLabel -> Automatic], Plot3D[Fu[a, b], {a, 1, 2}, {b, 3, 4}, Mesh -> None, ColorFunction -> Hue]} 
 Thank you again. This is exactly equal to F[a_?NumericQ, b_?NumericQ] := NIntegrate[Sin[x^a - x^b], {x, 1, 2}] Plot[F[y, 3.5], {y, 1, 2}] Why that?