Come Back
Same basic code as yesterday, but messed around with so that it's much less obvious that the underlying object is a regular octagon. No deep math, but fun nonetheless.
The code:
DynamicModule[{n = 8, k = 6, r, cols, verts},
cols = RGBColor /@ {"#00ADB5", "#EEEEEE", "#FF5722", "#303841"};
Manipulate[
r = Cos[s];
verts =
Table[(1 - r (-1)^(i + 1)) {Cos[2 ? i/n - ? (r + 1)/8],
Sin[2 ? i/n - ? (r + 1)/8]}, {i, 0, n - 1}];
Graphics[{Thickness[.0075], CapForm["Round"], Opacity[.8],
Table[{Blend[cols[[;; 3]], 1 - Abs[11/5 t - 11/10]],
Line[{t verts[[i]] + (1 - t) RotateRight[verts, 3][[i]],
t RotateLeft[verts, k][[i]] + (1 - t) RotateLeft[verts,
k + 1][[i]]}]}, {i, 1, n - 1, 2}, {t, 1/12, 11/12,
1/12}]}, PlotRange -> 3, ImageSize -> 540,
Background -> cols[[4]]], {s, 0, ?}]]