Message Boards Message Boards

2
|
3968 Views
|
3 Replies
|
4 Total Likes
View groups...
Share
Share this post:

[GIF] Control Yourself (Deforming the square grid)

Deforming the square grid

Control Yourself

Just something super simple this time.

DynamicModule[{cols, r, s},
 cols = RGBColor /@ {"#00EAFF", "#F37EF9", "#020438"};
 Manipulate[
  s = Pi/12 Cos[t];
  Graphics[
   {CapForm["Round"], Thickness[.005], Blend[cols[[;; 2]], Haversine[t]],
    Table[{
      r = 2 x + 1/2 + (-1)^y/2 + 5;
      Line[{2 x + 1/2 + (-1)^y/2, y + (-1)^y} + .72 # & /@
        {{0, 0}, {Cos[θ + (-1)^y  s + Pi/4], Sin[θ + (-1)^y  s + Pi/4]}}]},
     {x, -4, 3}, {y, -8, 7}, {θ, 0, 3 Pi/2, 2 Pi/4}]},
   PlotRange -> 7, ImageSize -> 540, Background -> cols[[-1]]],
  {t, 0, 2 Pi}]
 ]
3 Replies
Posted 9 years ago

I present a slight variation. Not as concise, but surprisingly fluid:

With[{m = 7, n = 7, r = 6, c1 = RGBColor["#00EAFF"], c2 = RGBColor["#F37EF9"], cb = RGBColor["#020438"]}, 
     Manipulate[Graphics[With[{? = ? Sin[?]/r}, 
                              Table[{Directive[AbsoluteThickness[2], Blend[{c1, c2}, Haversine[r ?]]], 
                                     Line[TranslationTransform[{j, k}] @
                                          {{0, 0}, (Haversine[?] + Haversine[{? + ?/2, ? - ?/2}])/2, {1, 1}/2,
                                           (Haversine[? + ?] + Haversine[{? - ?/2, ? + ?/2}])/2, {1, 1}}], 
                                     Line[TranslationTransform[{j, k}] @
                                          {{0, 1}, (Haversine[{?, ? + ?}] + Haversine[? - ?/2])/2, {1, 1}/2,
                                           (Haversine[{? + ?, ?}] + Haversine[? + ?/2])/2, {1, 0}}]},
                                    {j, 0, m - 1}, {k, 0, n - 1}]], 
                           Background -> cb], {?, 0, 2 ?}]]
POSTED BY: J. M.
Posted 9 years ago

It was so nice, I couldn't help myself:

DynamicModule[{cols = RGBColor /@ {"#00EAFF", "#F37EF9", "#020438"}},
              Manipulate[Graphics[{CapForm["Round"], Thickness[.005], Blend[cols[[;; 2]], Haversine[t]],
                                   Line[Flatten[Table[With[{s = ?/12 Cos[t]},
                                        TranslationTransform[{2 x + 1/2 + (-1)^y/2, y + (-1)^y}][.72{{0, 0},
                                                             {Cos[? + (-1)^y s + ?/4], Sin[? + (-1)^y s + ?/4]}}]],
                                         {x, -4, 3}, {y, -8, 7}, {?, 0, 3 ?/2, 2 ?/4}], 2]]},
                                   Background -> cols[[-1]], ImageSize -> 540, PlotRange -> 7], {t, 0, 2 ?}]]
POSTED BY: J. M.

Hey, thanks! Yours is definitely better than mine (and makes it clear that my declared-but-never-used r is completely superfluous), but I'm actually surprised how relatively non-responsive the Manipulate is in either case. Seems like it shouldn't be so computationally intensive.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract