Ph.D. in Mechanical Engineering

EDUCATION

2018.03. – 2024.02. Kyungpook National University, Daegu, South Korea

- **Ph.D.** in Mechanical Engineering. Thesis focused on systematically testing the geometrical attributes of cooling channels. Key findings suggested incorporating wall concavity and smooth flow bifurcation to improve the channel heat dissipation ability.
- Coursework included a finite element analysis course, which involved writing code in Wolfram Language to analyze composite time integration schemes and discussing their dispersion properties.

2015.08. – 2017.06. GIK Institute, Topi, Pakistan

- **M.S.** in Mechanical Engineering. Thesis focused on development of Nusselt number correlations Nu(Re,Pr) for the phase change of salt hydrate slurry in cooling channels.
- Coursework involved in-depth modeling of the heat equation in cylindrical and spherical coordinates, writing code to improve solar panel efficiency, and programming microcontrollers to rectify underwater vehicle wheel slippage.

2010.08. – 2014.06. GIK Institute, Topi, Pakistan

• **B.S.** in Mechanical Engineering. Coursework included analytical and numerical solutions of ordinary and partial differential equations.

WORK AND TEACHING EXPERIENCE

2024.03. – Present **Postdoctoral Researcher**

at Bio & Experimental Fluid Engineering Lab, Daegu, Korea

- Utilizing Wolfram Language to conduct simulations in topology optimization research focusing on 3D-printed heat sinks.
- The project involves using finite element analysis to solve partial differential equations for coolant flow.
- I'm also writing successful proposals for well-funded research projects.

2018.03. – 2024.02.Supervised computational fluid dynamics projects
as a *Graduate Research Assistant* at Bio & Experimental Fluid Engineering Lab, Daegu, Korea

- Mentored undergraduate students in computational fluid dynamics projects.
- Projects included analyses of turbulent flow in centrifugal pumps and bullet aerodynamics.

2017.08. – 2018.02. **Developed a solar-powered adsorption refrigerator** as a *Research Assistant* at GIK Institute, Topi, Pakistan

- Led an undergrad student team with the development of a solar-powered adsorption refrigerator for vaccine storage
- The development process included research, design calculations, and documentation.

2015.08. – 2017.07. Conducted scientific programming workshops

as a Graduate Research Assistant at GIK Institute, Topi, Pakistan

- Conducted training on solving mechanical vibration problems in Wolfram Mathematica, among others; sample of my workshop: http://tinyurl.com/safi-mathematica
- Conducted trainings on CFD modeling of phase change materials in *ANSYS Fluent*; sample of my workshop: http://tinyurl.com/safi-fluent
- Course grader for Ordinary Differential Equations, Heat Transfer Modeling, Fluid Mechanics, Statics, and Mechanical Vibrations courses

Partial Differential Equations Coupling in Free and Porous Dual-Media Flow

- Developed FEA coding strategies in Wolfram Mathematica to solve fluid flow in complex dual-region structural models. Results published on my Wolfram Community post: <u>https://community.wolfram.com/web/gikiian/</u>
- The project was part of the highly selective program **Wolfram Summer School** in 2024; mentored by **Stephen Wolfram** and the lead PDE developers at Wolfram Research, USA.

Intelligent Microcontroller Design to Solve a Bearing Slippage Issue

- Programmed the servo motor using Wolfram Language & Modelica to address the slippage of magnetic bearings in an autonomous underwater vehicle.
- The project involved integrating Hall effect sensors with an Arduino Mega microcontroller to detect slippage in the magnetic coupling.

Spherical Heat Equation Visualization for Phase Change Material

- Developed numerical solution code for the heat equation in spherical coordinates to track phase change material interface over 24 hours.
- The code visualizes the series solution of the spherical heat equation over a sphere, depicting temperature profiles of a spherical PCM and its surroundings, with adjustable time control.

Application for Capacity Assessment of Solar-powered Air Conditioner

- Created user interface in Wolfram Language to input system parameters, such as available solar collector area
- The program generated system metrics such as operating temperatures and the percentage of energy demand met by solar power for a specified month.
- The program generated plots such as solar collector area vs energy contribution to evaluate system efficiency.

COMPUTATIONAL SKILLS

- Software: Wolfram Mathematica & System Modeler, COMSOL Multiphysics, Ansys Fluent
- Programming languages: Wolfram language, Python, Java

PROFESSIONAL DEVELOPMENT

2012.09. IEEE Robotics Summer School 2012, Alanya, Turkey

- Full scholarship & travel grant provided upon winning the National Engineering Robotics Contest.
- Collaborated with the *Standard Test Methods for Response Robots* division at *NIST, USA*, to craft a detailed 3D model of earthquake-stricken terrains; presented to the worldwide *RoboCup* teams.

AWARDS & RECOGNITION

- Best Researcher Award, 2021: Awarded by National Research Foundation of Korea for research on CFD simulation of heat exchangers
- *IEEE-RAS Scholarship Recipient (tuition + travel)* to attend the IEEE Rescue Robotics Summer School in Turkey (2012.09.)
- Team member for NightFury a robot that won the *Best Engineering Design Award* among 170+ teams in Pakistan at the National Engineering Robotics Contest, 2012. Project details: http://bit.ly/NightFuryRobot

ADDITIONAL INFO

• Reviewer (with focus on CFD and FEA related articles) for International Journal of Heat and Mass Transfer and Journal of Thermal Sciences.

JOURNAL PUBLICATIONS

Hydrostructural phenomena in a wastewater screening channel with an ascendable sub-screen using the arbitrary Lagrangian–Eulerian approach <u>SA Memon</u>, S Akhtar, HB Chae, DW Choi, CW Park *Applied Sciences*, Vol. 14, No. 1, pp. 76, **2024**. DOI: <u>https://doi.org/10.3390/app14010076</u>

Enhancing heat transfer in microchannels: a systematic evaluation of crescent-like fin and wall geometries with secondary flow

<u>SA Memon</u>, S Akhtar, TA Cheema, CW Park *Applied Thermal Engineering*, Vol. 239, pp. 122099, **2024**. DOI: https://doi.org/10.1016/j.applthermaleng.2023.122099

Numerical investigation of solid–liquid dissolution for nutrient mixing improvement in a thin-layer cascade system S Akhtar, <u>SA Memon</u>, S Siddiqa, CW Park *Waste and Biomass Valorization*, pp. 1-15, **2023**. DOI: <u>https://doi.org/10.1007/s12649-023-02180-x</u>

Investigation of the hydrothermal phenomena in a wavy microchannel with secondary flow passages through mid-wall inflection points

<u>SA Memon</u>, S Akhtar, TA Cheema, CW Park *Applied Thermal Engineering*, Vol. 223, pp. 120010, **2023**. DOI: <u>https://doi.org/10.1016/j.applthermaleng.2023.120010</u>

Hydrothermal investigation of a microchannel heat sink using secondary flows in trapezoidal and parallel orientations
<u>SA Memon</u>, TA Cheema, GM Kim, CW Park *Energies*, Vol. 13, No. 21, pp. 5616, **2020**.
DOI: https://doi.org/10.3390/en13215616

Investigation of the thermal performance of salt hydrate phase change of nanoparticle slurry flow in a microchannel <u>SA Memon</u>, MB Sajid, MS Malik, A Alquaity, MMU Rehman, TA Cheema, MK Kwak, CW Park *Journal of Chemistry*, Vol. 2019, **2019**. DOI: https://doi.org/10.1155/2019/5271923

Numerical analysis of entropy generation and pressure drop performance of phase change material slurries in microchannels of high heat generating electronic devices

MM Ali, <u>SA Memon</u>

Theoretical & Applied Science, Vol. 57, No. 1, pp. 1-8, **2018**. DOI: <u>https://doi.org/10.15863/TAS.2018.01.57.1</u>

PHD THESIS

Enhancement of hydrothermal behavior in a microchannel heat sink including secondary flow

SA Memon

School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea, **2024**. URL: <u>https://dcollection.knu.ac.kr/srch/srchDetail/000000106551</u>

CONFERENCE PRESENTATIONS

Sensitivity in topology optimization of heat sinks for IC chip cooling <u>SA Memon</u>, CW Park International Congress of Theoretical and Applied Mechanics (ICTAM 2024), Daegu, Korea, **2024**.

Numerical study on the phase change material applied flow in a microchannel **<u>SA Memon</u>**, CW Park

Advances in Functional Materials 2023 (AFM 2023), Fukuoka, Japan, 2023.

Investigation of thermal performance in microchannels with secondary flow

SA Memon, CW Park

Fall 2021 Conference of the Korean Society of Visualization Information, Busan, Korea, 2021.

Thermal performance enhancement in a microchannel with secondary flow passage **<u>SA Memon</u>**, CW Park

Fall 2020 Conference of the Korean Society of Visualization Information, Gwangju, Korea, 2020.

Salt hydrate slurry flow characteristics in a microchannel <u>SA Memon</u>, CW Park Fall 2018 Conference of the Korean Society of Visualization Information, Busan, Korea, **2018**.

Cooling phenomenon of salt hydrate slurry flow in a microchannel <u>SA Memon</u>, CW Park Spring 2018 Conference of the Korean Society of Visualization Information, Seoul, Korea, **2018**.

Numerical study of slurry flow cooling performance with phase change nanoparticles in a microchannel **<u>SA Memon</u>**, MB Sajid, MMU Rehman, MS Malik, AS Alquaity 10th Intl. Conference on Computational Heat, Mass and Momentum Transfer, Seoul, Korea, **2017**.