Also interesting is to look at the length of the route versus the direct distance:
copy=DeleteDuplicates[Flatten[#,1]]&/@alldata; (* merge data and delete duplicates*)
directlength=GeoDistance2@@@copy[[All,{1,-1}]]; (* calculate direct distance*)
routelength=BlockMap[GeoDistance2@@#&,#,2,1]&/@copy; (* calculate road distance *)
routelength=Total/@routelength; (* total it*)
ListPlot[{directlength,routelength}\[Transpose]/1000.0,Frame->True,AspectRatio->Automatic,Epilog->{Line[{{0,0},{1000,1000}}]},FrameLabel->(Style[#,14]&/@{"Direct distance [km]","Road distance [km]"})]
Histogram[routelength/directlength,Automatic,"PDF",Frame->True,FrameLabel->(Style[#,14]&/@{"\[CurlyPhi] = Road distance/Direct distance","PDF(\[CurlyPhi])"})]
where GeoDistance2 is a quick version of GeoDistance:
ClearAll[GeoDistance2]
GeoDistance2[{lat1_,lon1_},{lat2_,lon2_}]:=Module[{\[CurlyPhi]1,\[CurlyPhi]2,\[CapitalDelta]\[CurlyPhi],\[CapitalDelta]\[Lambda],a,c},
{\[CurlyPhi]1,\[CurlyPhi]2}={lat1,lat2}Degree;
\[CapitalDelta]\[CurlyPhi]=\[CurlyPhi]2-\[CurlyPhi]1;
\[CapitalDelta]\[Lambda]=(lon2-lon1)Degree;
a=Haversine[\[CapitalDelta]\[CurlyPhi]]+Cos[\[CurlyPhi]1]Cos[\[CurlyPhi]2]Haversine[\[CapitalDelta]\[Lambda]];
c=2ArcTan[Sqrt[1-a],Sqrt[a]];
6.3674446571 10^6c (* result in meters *)
]


I guess the average ratio describes how developed a country is/how mountainous it is/how many water bodies it has. A comparison for different countries would be very nice. But I don't want to kill the Wolfram servers...