Consider the following code:
0F1[;1;j*pi/2x]*e^j2*pi*x
x[-pi/2,+pi/2]
The task is to visualize the real and imaginary part here is how i tried it what has to be different?besides i need the first three derivatives it didnt work like that
Grid[
Partition[
Table[
Plot[
Evaluate[{Re[
D[Hypergeometric0F1[
1, (\[ImaginaryJ]*\[Pi]/2*x)*E^j2\[Pi]x], {x, i}]],
Im[D[
Hypergeometric0F1[
1, (\[ImaginaryJ]*\[Pi]/2*x)*E^j2\[Pi]x], {x, i}]]}],
{x, -2/\[Pi], 2/\[Pi]},
PlotRange -> Automatic,
Frame -> True,
GridLines -> Automatic,
AspectRatio -> 1,
FrameLabel -> {"x",
StringForm[
"\!\(\*SubscriptBox[\(\[InvisiblePrefixScriptBase]\), \(0\)]\)\
\!\(\*SubscriptBox[OverscriptBox[\(F\), \(~\)], \(1\)]\)^(``)(\
\[ImaginaryJ]*\[Pi]/2*x)*\!\(\*SuperscriptBox[\(\[ExponentialE]\), \
\(j2\[Pi]x\)]\)"]},
PlotLegends -> Placed[{"Re", "Im"}, {Center, Top}],
ImageSize -> 300], {i, 0, 3}], 2], Frame -> All]
Attachments: