Thanks for your reply. Omega and epsilon are real. Due to the complexity of the integral adding in the assumptions didn't change anything (the kernel just crashes after a while).
I've already done some attempts at verifying the authors' results. In fact, the lack of agreement was why I'm trying to re-do their solving of this integral to begin with. Their formula for
$G_1$ only works in one situation. To explain more I need to write some more definitions:
$$\epsilon=(\omega-\epsilon_t)(\omega-\epsilon_p)-4$$
$$\Delta p=1-(\omega-\epsilon_p)\Delta\epsilon_t$$
$$\Omega=\frac{\Delta p^2 + 1}{2\Delta p} + \frac{\epsilon}{2}$$
Here, the true fundamental parameters are
$\epsilon_t$, the energy of a certain orbital (diagonal Hamiltonian matrix element),
$\epsilon_p$ is another orbital energy, and
$\Delta\epsilon_t$ is a perturbation of a surface ion's energy due to the change in atomic environment. The formula for
$G_1$ only works when
$\Delta\epsilon_t=0$, and only gives the correct value for the imaginary part (contributing to the density of states). The real part disagrees with what is plotted in the paper. Similarly though, solving the integral for G1 numerically is pretty unstable and I'm unable to get agreement with the paper except in the
$\Delta\epsilon_t=0$ case for the imaginary part.
Here's some code showing some more playing around with this system:
\[Epsilon]p = -9.0;
\[Epsilon]t = -6.0;
\[CapitalDelta]\[Epsilon]t = 0.0;
\[Epsilon][w_] := (w - \[Epsilon]p) (w - \[Epsilon]t) - 4
\[CapitalDelta]p[w_] :=
1 - (w + \[Epsilon]p) \[CapitalDelta]\[Epsilon]t
\[CapitalOmega][w_] := ((\[CapitalDelta]p[w])^2 + 1)/(
2 \[CapitalDelta]p[w]) + \[Epsilon][w]/2
Plot[\[Epsilon][w], {w, -12, -3}]
Plot[\[CapitalDelta]p[w], {w, -12, -3}]
Plot[\[CapitalOmega][w], {w, -12, -3}]
Manipulate[
Plot[{Re[(1/(x + \[CapitalOmega][
w])) ((1 - (x - \[Epsilon][w]/2)^2)/(1 - x^2))^(1/2)],
Im[(1/(x + \[CapitalOmega][w])) ((1 - (x - \[Epsilon][w]/2)^2)/(1 -
x^2))^(1/2)]}, {x, -1, 1}], {w, -12.5, -3}]
\[Alpha][w_] := (\[CapitalDelta]p[w] + 1)^2/(\[CapitalOmega][w] + 1)
\[Beta][w_] := (\[CapitalDelta]p[w] - 1)^2/(\[CapitalOmega][w] + 1)
\[Gamma][w_] := ((\[CapitalDelta]p[w])^2 - 1)/\[CapitalDelta]p[w]
\[Eta][w_] := 1/4 \[Epsilon][w]
\[Eta]1[w_] := 1 - (\[Eta][w])^2
\[Xi][w_] := 1/\[Eta][w]
G2[w_] := ((\[CapitalDelta]p[w])^2 - 1)/(
4 (\[CapitalDelta]p[w])^2 Sqrt[(\[CapitalOmega][w])^2 - 1])
t = -4.7; N[
Piecewise[{{1/(
2 \[CapitalDelta]p[t]) (1 +
2/Pi (1 + \[Xi][
t]) (\[Alpha][
t] EllipticPi[-\[Beta][t] \[Xi][t], (Abs[\[Xi][t]])^2] -
EllipticPi[-\[Xi][t], (Abs[\[Xi][t]])^2])),
Abs[\[Epsilon][t]] >
4}, {(1 + \[Eta][t])/(Pi \[CapitalDelta]p[t])
Sign[\[Epsilon][
t]] (\[Alpha][
t] EllipticPi[-\[Beta][t] \[Eta][t], (Abs[\[Eta][t]])^2] -
EllipticPi[-\[Eta][t], (Abs[\[Eta][t]])^2]) +
Sign[\[Gamma][t]] G2[t] - ((I \[Eta][t])/(
Pi \[CapitalDelta]p[
t])) (\[Beta][
t] EllipticPi[-\[Alpha][t] (1 + \[Eta][t]), (Abs[\[Eta]1[
t]])^2] -
EllipticPi[(1 + \[Eta][t]), (Abs[\[Eta]1[t]])^2]),
Abs[\[Epsilon][t]] < 4}}]]
1/(2 \[CapitalDelta]p[t]) (1 -
I/Pi NIntegrate[(1/(x + \[CapitalOmega][
t])) ((1 - (x - \[Epsilon][t]/2)^2)/(1 - x^2))^(1/
2), {x, -1, 1}])
Plot[-2/Pi Abs[w + 9] Re[
1/(2 \[CapitalDelta]p[w]) (1 -
I/Pi NIntegrate[(1/(x + \[CapitalOmega][
w])) ((1 - (x - \[Epsilon][w]/2)^2)/(1 - x^2))^(1/
2), {x, -1, 1}])], {w, -12.5, -3},
PlotRange -> {{-3, -12}, {-2, 2}}]
Plot[-1/Pi (w + 9) Re[
Piecewise[{{1/(
2 \[CapitalDelta]p[w]) (1 +
2/Pi (1 + \[Xi][
w]) (\[Alpha][
w] EllipticPi[-\[Beta][w] \[Xi][w], (Abs[\[Xi][w]])^2] -
EllipticPi[-\[Xi][w], (Abs[\[Xi][w]])^2])),
Abs[\[Epsilon][w]] >
4}, {(1 + \[Eta][w])/(Pi \[CapitalDelta]p[w])
Sign[\[Epsilon][
w]] (\[Alpha][
w] EllipticPi[-\[Beta][w] \[Eta][w], (Abs[\[Eta][w]])^2] -
EllipticPi[-\[Eta][w], (Abs[\[Eta][w]])^2]) +
Sign[\[Gamma][w]] G2[w] - ((I \[Eta][w])/(
Pi \[CapitalDelta]p[
w])) (\[Beta][
w] EllipticPi[-\[Alpha][w] (1 + \[Eta][w]), (Abs[\[Eta]1[
w]])^2] -
EllipticPi[(1 + \[Eta][w]), (Abs[\[Eta]1[w]])^2]),
Abs[\[Epsilon][w]] < 4}}]], {w, -12.5, -3},
PlotRange -> {{-3, -12.5}, {-2, 2}}]
Plot[-2/Pi Abs[w + 9] Im[
1/(2 \[CapitalDelta]p[w]) (1 -
I/Pi NIntegrate[(1/(x + \[CapitalOmega][
w])) ((1 - (x - \[Epsilon][w]/2)^2)/(1 - x^2))^(1/
2), {x, -1, 1}])], {w, -12.5, -3},
PlotRange -> {{-3, -12}, {0, 3}}]
Plot[-2/Pi Abs[w + 9] Im[
Piecewise[{{1/(
2 \[CapitalDelta]p[w]) (1 +
2/Pi (1 + \[Xi][
w]) (\[Alpha][
w] EllipticPi[-\[Beta][w] \[Xi][w], (Abs[\[Xi][w]])^2] -
EllipticPi[-\[Xi][w], (Abs[\[Xi][w]])^2])),
Abs[\[Epsilon][w]] >
4}, {(1 + \[Eta][w])/(Pi \[CapitalDelta]p[w])
Sign[\[Epsilon][
w]] (\[Alpha][
w] EllipticPi[-\[Beta][w] \[Eta][w], (Abs[\[Eta][w]])^2] -
EllipticPi[-\[Eta][w], (Abs[\[Eta][w]])^2]) +
Sign[\[Gamma][w]] G2[w] - ((I \[Eta][w])/(
Pi \[CapitalDelta]p[
w])) (\[Beta][
w] EllipticPi[-\[Alpha][w] (1 + \[Eta][w]), (Abs[\[Eta]1[
w]])^2] -
EllipticPi[(1 + \[Eta][w]), (Abs[\[Eta]1[w]])^2]),
Abs[\[Epsilon][w]] < 4}}]], {w, -12.5, -3},
PlotRange -> {{-3, -12.5}, {0, 3}}]