Message Boards Message Boards

GROUPS:

[✓] Simplify expression/ Turn eq1 into eq2?

Posted 1 year ago
1699 Views
|
4 Replies
|
2 Total Likes
|

How to turn eq1 into eq2? Thanks.

eq1 = (-A2 + pinf (s + \[Theta]c))/(s (s + \[Theta]c)) - (
  A1 Dc E^((lh - x) Sqrt[(s + \[Theta]c)/
    Dc]) (\[Alpha]1 Sqrt[Dp (s + \[Theta]c)] + Sqrt[
     s (s + \[Theta]c)]))/((Sqrt[s] + 
     Sqrt[Dp] \[Alpha]1) (s + \[Theta]c) (-Dc s + 
     Dp (s + \[Theta]c))) + (E^((s (lh - x))/Sqrt[
     Dp s]) (Sqrt[
        Dp] \[Alpha]1 (Dc s - Dp (s + \[Theta]c)) (-A2 + 
          pinf (s + \[Theta]c)) + 
       A1 s (Sqrt[Dc Dp] s + Sqrt[Dc Dp] \[Theta]c + 
          Dc \[Alpha]1 Sqrt[Dp (s + \[Theta]c)])))/(s (Sqrt[s] + 
       Sqrt[Dp] \[Alpha]1) (s + \[Theta]c) (-Dc s + 
       Dp (s + \[Theta]c)))

eq2 = -((A1 Dc E^((lh - x) Sqrt[(s + \[Theta]c)/Dc]))/(
   Sqrt[s + \[Theta]c] (-Dc s + Dp (s + \[Theta]c)))) + (-A2 + 
   pinf (s + \[Theta]c))/(s (s + \[Theta]c)) + 
  E^((s (lh - x))/Sqrt[
   Dp s]) ((
     A1 Sqrt[Dc Dp])/((Sqrt[s] + Sqrt[Dp] \[Alpha]1) (-Dc s + 
        Dp (s + \[Theta]c))) + (
     A1 Dc Sqrt[Dp] \[Alpha]1)/((Sqrt[s] + Sqrt[Dp] \[Alpha]1) Sqrt[
      s + \[Theta]c] (-Dc s + Dp (s + \[Theta]c))) - (
     Sqrt[Dp] \[Alpha]1 (-A2 + pinf (s + \[Theta]c)))/(
     s (Sqrt[s] + Sqrt[Dp] \[Alpha]1) (s + \[Theta]c)))
4 Replies

Collecting the exponential comes close to your form:

Collect[eq1, E^_, Simplify]
Posted 1 year ago

Dear Gianluca, I tried 'Collect' and 'Simplify', but the fractions in the results are not the simplest.

In[66]:= eq3 = Collect[eq1, E^_, Simplify]

Out[66]= (-A2 + pinf (s + \[Theta]c))/(s (s + \[Theta]c)) - (
 A1 Dc E^((lh - x) Sqrt[(s + \[Theta]c)/
   Dc]) (\[Alpha]1 Sqrt[Dp (s + \[Theta]c)] + Sqrt[
    s (s + \[Theta]c)]))/((Sqrt[s] + 
    Sqrt[Dp] \[Alpha]1) (s + \[Theta]c) (-Dc s + 
    Dp (s + \[Theta]c))) + (E^((s (lh - x))/Sqrt[
    Dp s]) (Sqrt[
       Dp] \[Alpha]1 (Dc s - Dp (s + \[Theta]c)) (-A2 + 
         pinf (s + \[Theta]c)) + 
      A1 s (Sqrt[Dc Dp] s + Sqrt[Dc Dp] \[Theta]c + 
         Dc \[Alpha]1 Sqrt[Dp (s + \[Theta]c)])))/(s (Sqrt[s] + 
      Sqrt[Dp] \[Alpha]1) (s + \[Theta]c) (-Dc s + 
      Dp (s + \[Theta]c)))

This is even simpler:

eq4 = -((A1 Dc E^((lh - x) Sqrt[(s + \[Theta]c)/Dc]))/(Sqrt[
        s + \[Theta]c] (-Dc s + Dp (s + \[Theta]c)))) + (-A2 + 
     pinf (s + \[Theta]c))/(s (s + \[Theta]c)) + 
  E^((s (lh - x))/Sqrt[Dp s]) (
   Sqrt[Dp] ((A1 Sqrt[Dc])/(-Dc s + Dp (s + \[Theta]c)) + (
      A1 Dc \[Alpha]1)/(
      Sqrt[s + \[Theta]c] (-Dc s + 
         Dp (s + \[Theta]c))) - (\[Alpha]1 (-A2 + 
         pinf (s + \[Theta]c)))/(s (s + \[Theta]c))))/(
   Sqrt[s] + Sqrt[Dp] \[Alpha]1)
Posted 1 year ago

Dear Gianluca, Would you like to tell me how to get the result above? Thanks.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract