I use
/. x -> 0
in eq2, and I can't get the limit. I have to use a much more complicated substitution in eq3
/. {-((A11 E^(
A3 t - A3 t1 - (-lh + x)^2/(4 Dc t1) - t1 \[Theta]c) (-lh + x))/(
2 Dc t1^(3/2))) ->
0, -((E^(-((-lh + x)^2/(4 Dp t1))) (-lh + x))/(
2 Dp Sqrt[\[Pi]] t1^(3/2))) ->
0, \[Alpha]1 (-lh + x + Dp t1 \[Alpha]1) - (1/2 (-lh + x) +
Dp t1 \[Alpha]1)^2/(Dp t1) -> -\[Infinity],
E^(\[Alpha]1 (-lh + x + Dp t1 \[Alpha]1)) \[Alpha]1^2 Erfc[(
1/2 (-lh + x) + Dp t1 \[Alpha]1)/Sqrt[Dp t1]] -> 0}
and I can get the limit. Is there a simpler substitution than eq3?
In[111]:=
p3[x_, t_] = pinf + (A2 (-1 + E^(-t \[Theta]c)))/\[Theta]c + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(
\*FractionBox[\(A11\
\*SuperscriptBox[\(E\), \(A3\ t - A3\ t1 -
\*FractionBox[
SuperscriptBox[\((\(-lh\) + x)\), \(2\)], \(4\ Dc\ t1\)] -
t1\ \[Theta]c\)]\),
SqrtBox[\(t1\)]] \[DifferentialD]t1\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(\((\(-A8\) + A9 -
A15\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)] - A9\
\*SuperscriptBox[\(E\), \(\((\(-t\) + t1)\)\ \[Theta]c\)] - A16\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)]\ Erf[
\*SqrtBox[\(A5\)]\
\*SqrtBox[\(t - t1\)]])\)\ \((
\*FractionBox[
SuperscriptBox[\(E\), \(-
\*FractionBox[
SuperscriptBox[\((\(-lh\) + x)\), \(2\)], \(4\ Dp\ t1\)]\)], \(
\*SqrtBox[\(\[Pi]\)]\
\*SqrtBox[\(t1\)]\)] -
\*SqrtBox[\(Dp\)]\
\*SuperscriptBox[\(E\), \(\[Alpha]1\ \((\(-lh\) + x +
Dp\ t1\ \[Alpha]1)\)\)]\ \[Alpha]1\ Erfc[
\*FractionBox[\(
\*FractionBox[\(1\), \(2\)]\ \((\(-lh\) + x)\) + Dp\ t1\ \[Alpha]1\),
SqrtBox[\(Dp\ t1\)]]])\) \[DifferentialD]t1\)\)
Out[111]= pinf + (A2 (-1 + E^(-t \[Theta]c)))/\[Theta]c + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(
\*FractionBox[\(A11\
\*SuperscriptBox[\(E\), \(A3\ t - A3\ t1 -
\*FractionBox[
SuperscriptBox[\((\(-lh\) + x)\), \(2\)], \(4\ Dc\ t1\)] -
t1\ \[Theta]c\)]\),
SqrtBox[\(t1\)]] \[DifferentialD]t1\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(\(\((\(-A8\) +
A9 - A15\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)] - A9\
\*SuperscriptBox[\(E\), \(\((\(-t\) + t1)\)\ \[Theta]c\)] - A16\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)]\ Erf[
\*SqrtBox[\(A5\)]\
\*SqrtBox[\(t - t1\)]])\)\ \((
\*FractionBox[
SuperscriptBox[\(E\), \(-
\*FractionBox[
SuperscriptBox[\((\(-lh\) + x)\), \(2\)], \(4\ Dp\ t1\)]\)], \(
\*SqrtBox[\(\[Pi]\)]\
\*SqrtBox[\(t1\)]\)] -
\*SqrtBox[\(Dp\)]\
\*SuperscriptBox[\(E\), \(\[Alpha]1\ \((\(-lh\) + x +
Dp\ t1\ \[Alpha]1)\)\)]\ \[Alpha]1\ Erfc[
\*FractionBox[\(
\*FractionBox[\(1\), \(2\)]\ \((\(-lh\) + x)\) + Dp\ t1\ \[Alpha]1\),
SqrtBox[\(Dp\ t1\)]]])\)\) \[DifferentialD]t1\)\)
In[112]:= eq1 = D[p3[x, t], x] == 0
Out[112]= \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(\(-
\*FractionBox[\(A11\
\*SuperscriptBox[\(E\), \(A3\ t - A3\ t1 -
\*FractionBox[
SuperscriptBox[\((\(-lh\) + x)\), \(2\)], \(4\ Dc\ t1\)] -
t1\ \[Theta]c\)]\ \((\(-lh\) + x)\)\), \(2\ Dc\
\*SuperscriptBox[\(t1\), \(3/2\)]\)]\) \[DifferentialD]t1\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(\(\((\(-A8\) +
A9 - A15\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)] - A9\
\*SuperscriptBox[\(E\), \(\((\(-t\) + t1)\)\ \[Theta]c\)] - A16\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)]\ Erf[
\*SqrtBox[\(A5\)]\
\*SqrtBox[\(t - t1\)]])\)\ \((\(-
\*FractionBox[\(
\*SuperscriptBox[\(E\), \(-
\*FractionBox[
SuperscriptBox[\((\(-lh\) +
x)\), \(2\)], \(4\ Dp\ t1\)]\)]\ \((\(-lh\) +
x)\)\), \(2\ Dp\
\*SqrtBox[\(\[Pi]\)]\
\*SuperscriptBox[\(t1\), \(3/2\)]\)]\) +
\*FractionBox[\(
\*SqrtBox[\(Dp\)]\
\*SuperscriptBox[\(E\), \(\[Alpha]1\ \((\(-lh\) + x +
Dp\ t1\ \[Alpha]1)\) -
\*FractionBox[
SuperscriptBox[\((
\*FractionBox[\(1\), \(2\)]\ \((\(-lh\) + x)\) +
Dp\ t1\ \[Alpha]1)\), \(2\)], \(Dp\ t1\)]\)]\ \
\[Alpha]1\), \(
\*SqrtBox[\(\[Pi]\)]\
\*SqrtBox[\(Dp\ t1\)]\)] -
\*SqrtBox[\(Dp\)]\
\*SuperscriptBox[\(E\), \(\[Alpha]1\ \((\(-lh\) + x +
Dp\ t1\ \[Alpha]1)\)\)]\
\*SuperscriptBox[\(\[Alpha]1\), \(2\)]\ Erfc[
\*FractionBox[\(
\*FractionBox[\(1\), \(2\)]\ \((\(-lh\) + x)\) + Dp\ t1\ \[Alpha]1\),
SqrtBox[\(Dp\ t1\)]]])\)\) \[DifferentialD]t1\)\) == 0
In[113]:= eq2 = eq1 /. x -> 0
Out[113]= \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(
\*FractionBox[\(A11\
\*SuperscriptBox[\(E\), \(A3\ t -
\*FractionBox[
SuperscriptBox[\(lh\), \(2\)], \(4\ Dc\ t1\)] - A3\ t1 -
t1\ \[Theta]c\)]\ lh\), \(2\ Dc\
\*SuperscriptBox[\(t1\), \(3/2\)]\)] \[DifferentialD]t1\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(\(\((\(-A8\) +
A9 - A15\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)] - A9\
\*SuperscriptBox[\(E\), \(\((\(-t\) + t1)\)\ \[Theta]c\)] - A16\
\*SuperscriptBox[\(E\), \(A3\ \((t - t1)\)\)]\ Erf[
\*SqrtBox[\(A5\)]\
\*SqrtBox[\(t - t1\)]])\)\ \((
\*FractionBox[\(
\*SuperscriptBox[\(E\), \(-
\*FractionBox[
SuperscriptBox[\(lh\), \(2\)], \(4\ Dp\ t1\)]\)]\ lh\), \(2\ Dp\
\*SqrtBox[\(\[Pi]\)]\
\*SuperscriptBox[\(t1\), \(3/2\)]\)] +
\*FractionBox[\(
\*SqrtBox[\(Dp\)]\
\*SuperscriptBox[\(E\), \(\[Alpha]1\ \((\(-lh\) +
Dp\ t1\ \[Alpha]1)\) -
\*FractionBox[
SuperscriptBox[\((\(-
\*FractionBox[\(lh\), \(2\)]\) +
Dp\ t1\ \[Alpha]1)\), \(2\)], \(Dp\ t1\)]\)]\ \
\[Alpha]1\), \(
\*SqrtBox[\(\[Pi]\)]\
\*SqrtBox[\(Dp\ t1\)]\)] -
\*SqrtBox[\(Dp\)]\
\*SuperscriptBox[\(E\), \(\[Alpha]1\ \((\(-lh\) +
Dp\ t1\ \[Alpha]1)\)\)]\
\*SuperscriptBox[\(\[Alpha]1\), \(2\)]\ Erfc[
\*FractionBox[\(\(-
\*FractionBox[\(lh\), \(2\)]\) + Dp\ t1\ \[Alpha]1\),
SqrtBox[\(Dp\ t1\)]]])\)\) \[DifferentialD]t1\)\) == 0
In[114]:= eq3 =
eq1 /. {-((
A11 E^(A3 t - A3 t1 - (-lh + x)^2/(4 Dc t1) -
t1 \[Theta]c) (-lh + x))/(2 Dc t1^(3/2))) ->
0, -((E^(-((-lh + x)^2/(4 Dp t1))) (-lh + x))/(
2 Dp Sqrt[\[Pi]] t1^(3/2))) ->
0, \[Alpha]1 (-lh + x + Dp t1 \[Alpha]1) - (1/2 (-lh + x) +
Dp t1 \[Alpha]1)^2/(Dp t1) -> -\[Infinity],
E^(\[Alpha]1 (-lh + x + Dp t1 \[Alpha]1)) \[Alpha]1^2 Erfc[(
1/2 (-lh + x) + Dp t1 \[Alpha]1)/Sqrt[Dp t1]] -> 0}
Out[114]= True