Group Abstract Group Abstract

Message Boards Message Boards

0
|
1.5K Views
|
0 Replies
|
0 Total Likes
View groups...
Share
Share this post:

Avoid contradiction of the Convolution Theorem?

Anonymous User
Anonymous User
Posted 8 years ago

The Convolution Theorem states that Fourier Transform of (A times B) equals the Convolution of ((Fourier Transform of A) and (Fourier Transform of B)). Here is one article on the Convolution Theorem.

But Mathematica gives results contradicting the Convolution Theorem. To reproduce,

fp = {0, -2 \[Pi]};

sign[t_] := HeavisideTheta[t]*2 - 1

rectangle[t_] := HeavisidePi[t/2]/2

product[t_] := rectangle[t]*sign[t]

transformOfSign[s_] := 
 Evaluate[FourierTransform[sign[t], t, s, FourierParameters -> fp]]

transformOfRectangle[s_] := 
 Evaluate[FourierTransform[rectangle[t], t, s, 
   FourierParameters -> fp]]

transformOfProduct[s_] := 
 Evaluate[FourierTransform[rectangle[t]*sign[t], t, s, 
   FourierParameters -> fp]]

convolution1[s_] := 
 Evaluate[Convolve[transformOfRectangle[x], transformOfSign[x], x, s]]

convolution2[s_] := 
 Evaluate[Convolve[transformOfSign[x], transformOfRectangle[x], x, s]]

The Convolution Theorem implies that "transformOfProduct" should equal "convolution1" and "convolution2", but Mathematica says that they are all different:

In[13]:= With[{testArgument = 1/4}, 
 Arg[{transformOfProduct[testArgument], convolution1[testArgument], 
   convolution2[testArgument]}]]

Out[13]= {-(\[Pi]/2), -(\[Pi]/4), -((3 \[Pi])/4)}

What is causing Mathematica to contradict the Convolution Theorem?

POSTED BY: Anonymous User
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard