# Polynomial dissappears when I multiply it

Posted 10 years ago
4948 Views
|
|
1 Total Likes
|
 HiI have houndreth degree polynomial (fit) with parameters: c*(d + (fit /. x -> ((x - b)*a))). I use Manipulate and when I set a value to 30, polynomial dissapears. It's only work when I set a to 5 (max) or when I create third-degree polynomial, then I can set a value up to 30 (it's ok for me). How can I fix this problem? I try fit my polynomial to different polynomial using Manipulate, code below:fit = Fit[data, poly[100][x], x];Manipulate[ Show[ListPlot[Table[Fibonacci[nn], {nn, 0, 20}]],   Plot[c*(d + (% /. x -> ((x - b)*a))), {x, 0, 20}]], {{a, 1, "a"}, 1}, {{b, 0, "b"}, 0}, {{c, 1, "c"}, 0}, {{d, 0, "d"}, 0}]And this is my polynomial: 218.597 + 10.3811 x - 0.995269 x^2 + 0.0419396 x^3 -   0.000969961 x^4 + 0.0000140334 x^5 - 1.35737*10^-7 x^6 +   9.0551*10^-10 x^7 - 4.18387*10^-12 x^8 + 1.30252*10^-14 x^9 -   2.49449*10^-17 x^10 + 2.05457*10^-20 x^11 + 1.66627*10^-23 x^12 -   3.78439*10^-26 x^13 - 2.20638*10^-29 x^14 + 5.07858*10^-32 x^15 +   5.90353*10^-35 x^16 - 3.30093*10^-38 x^17 - 1.19016*10^-40 x^18 -   7.72885*10^-44 x^19 + 8.74122*10^-47 x^20 + 2.31766*10^-49 x^21 +   1.94234*10^-52 x^22 - 6.20867*10^-56 x^23 - 3.94067*10^-58 x^24 -   5.50718*10^-61 x^25 - 3.31916*10^-64 x^26 + 2.64175*10^-67 x^27 + 9.86066*10^-70 x^28 + 1.41063*10^-72 x^29 + 1.1316*10^-75 x^30 - 1.29376*10^-80 x^31 - 1.78074*10^-81 x^32 - 3.50754*10^-84 x^33 - 4.27279*10^-87 x^34 - 3.22009*10^-90 x^35 + 5.2336*10^-95 x^36 + 5.15277*10^-96 x^37 + 1.07321*10^-98 x^38 + 1.4629*10^-101 x^39 + 1.43733*10^-104 x^40 + 7.86462*10^-108 x^41 - 5.62756*10^-111 x^42 - 2.4675*10^-113 x^43 - 4.52501*10^-116 x^44 - 6.06547*10^-119 x^45 - 6.27759*10^-122 x^46 - 4.36006*10^-125 x^47 + 2.22605*10^-129 x^48 + 7.42171*10^-131 x^49 + 1.6386*10^-133 x^50 + 2.525*10^-136 x^51 + 3.12155*10^-139 x^52 + 3.07975*10^-142 x^53 + 2.05012*10^-145 x^54 - 2.26051*10^-149 x^55 - 3.79444*10^-151 x^56 - 8.37637*10^-154 x^57 - 1.3234*10^-156 x^58 - 1.71611*10^-159 x^59 - 1.85072*10^-162 x^60 - 1.53713*10^-165 x^61 - 5.9878*10^-169 x^62 + 1.08073*10^-171 x^63 + 3.47931*10^-174 x^64 + 6.37911*10^-177 x^65 + 9.29457*10^-180 x^66 + 1.14416*10^-182 x^67 + 1.17558*10^-185 x^68 + 9.06958*10^-189 x^69 + 2.21176*10^-192 x^70 - 9.50832*10^-195 x^71 - 2.59087*10^-197 x^72 - 4.54238*10^-200 x^73 - 6.46034*10^-203 x^74 - 7.78592*10^-206 x^75 - 7.76866*10^-209 x^76 - 5.53614*10^-212 x^77 - 2.94067*10^-216 x^78 + 8.38913*10^-218 x^79 + 2.02063*10^-220 x^80 + 3.3642*10^-223 x^81 + 4.55856*10^-226 x^82 + 5.12104*10^-229 x^83 + 4.41889*10^-232 x^84 + 1.79794*10^-235 x^85 - 3.19992*10^-238 x^86 - 1.04824*10^-240 x^87 - 1.89737*10^-243 x^88 - 2.61657*10^-246 x^89 - 2.79632*10^-249 x^90 - 1.9078*10^-252 x^91 + 5.19433*10^-256 x^92 + 4.54755*10^-258 x^93 + 9.28597*10^-261 x^94 + 1.22419*10^-263 x^95 + 9.09785*10^-267 x^96 - 4.87788*10^-270 x^97 - 2.88002*10^-272 x^98 - 3.96187*10^-275 x^99 + 4.65783*10^-278 x^100