# Make a parametric plot graph?

Posted 1 year ago
1416 Views
|
3 Replies
|
1 Total Likes
|
 Consider the following code: g1=RandomReal[30000,{300}] g2=RandomReal[30000,{300}] s=RandomReal[30000,{300}] s2=RandomReal[30000,{300}] m=RandomReal[30000,{300}] G=6.67*10^-11 m1=s^g1*s2^-g2/(g2-g1)*m m2=s^g1*s2^-g2/(g2-g1)*m1 f=G*(s^2*g1)*(s2^-2*g2)/((g2-g1)^2)*m1*m2 f1=f-f*Power[f, (f)^-1] Can someone help me make a cool parametric region plot of all the variables ?
3 Replies
Sort By:
Posted 7 months ago
 There are 5 variables seemingly $g1,g2,s,s2,m$ and three plotting directions available. What is meant with all the variables? Let Clear[G, m0, f, f1] G = 6.67*10^(-11); m0[s_, g1_, s2_, g2_, m_] := s^g1 s2^(-g2)/(g2 - g1) m /; Chop[g2 - g1] != 0 m0[s_, g1_, s2_, g2_, m_] := 1 /; Chop[g2 - g1] == 0 f0[s_, g1_, s2_, g2_, m1_, m2_] := G (s^2 g1) (s2^-2 g2)/((g2 - g1)^2) m1 m2 /; Chop[g2 - g1] != 0 f0[s_, g1_, s2_, g2_, m1_, m2_] := 1 /; Chop[g2 - g1] == 0 f1[f_] := f (1 - Power[f, (f)^-1]) /; Chop[f] != 0 f1[f_] := 1 /; Chop[f] == 0 even if done with moderate requierements c1 and c2 it spreads in exponents and has imaginary parts: In[11]:= With[{c1 = 10, c2 = 30}, g1 = RandomReal[c1, {c2}]; g2 = RandomReal[c1, {c2}]; s = RandomReal[c1, {c2}]; s2 = RandomReal[c1, {c2}]; m = RandomReal[c1, {c2}]; m1 = Thread[m0[s, g1, s2, g2, m]]; m2 = Thread[m0[s, g1, s2, g2, m1]]; f = Thread[f0[s, g1, s2, g2, m1, m2]]; (* ListPlot[Transpose[{f,Thread[f1[f]]}]]*) Transpose[{f, Thread[f1[f]]}] ] Out[11]= {{-0.00928352186179031, 4.8059265895056695*^216 + 5.894052613877011*^216*I}, {-1.3977240429029253*^-17, 1}, {9.592489227522844*^-19, 1}, {3.306165144076391*^-26, 1}, {-0.058595625730573704, -6.112068216674609*^19 + 1.2881998336850297*^19*I}, {-0.000010051852482387577, 1.77861585200013803023948528513955523366429489727749452315.\ 954589770191005*^497192 - 9.0615501330233675112219287903513386786412008960306811415.\ 954589770191005*^497191*I}, {8.246697473360999*^-23, 1}, {-3.909167386312555*^-23, 1}, {-3.1157606206455647*^-25, 1}, {3.3469475609362563*^-21, 1}, {6.182588985090828*^-11, 1}, {-6.181510525382172*^-8, 3.0408644190324413478333847733379557982908003429447032615.\ 954589770191005*^116620442 + 4.23751930921033805537960578553777978452157712421617648315.\ 954589770191005*^116620442*I}, {2.9588610154654668*^-27, 1}, {-0.00023370299451464023, -4.0771714230981697081419308247541947273773900915.\ 954589770191005*^15534 - 8.399318284979987596670143328661238424862216315.\ 954589770191005*^15533*I}, {7.429204290756719*^7, -18.123516614064986}, \ {1.0157542225469982*^-15, 1}, {7.53352552227472*^-12, 1}, {-0.004590914377848869, 7.558356976476507500155973253220879499020984115.954589770191005*^\ 506 + 4.7458276747147043393877916685301193524441615.954589770191005*^\ 506*I}, {-5.2141394974079034*^-20, 1}, {-1.0887676724447832*^-6, 1.48189592241104964198939245086717607789429484839315.\ 954589770191005*^5476887 + 4.97800807833765910448363527750169965598907829987715.\ 954589770191005*^5476887*I}, {2.3359600766822557*^-30, 1}, {-1.8408340108610744*^-9, 1.05821371434193904778697292070168473948585815.954589770191005*^\ 4745123842 + 5.8231794646262657471465024068282054116519215.954589770191005*^\ 4745123841*I}, {5.834885489791577*^-28, 1}, {3.5041753229947925*^9, -21.977221353157965}, {-6.837819810727*^7, \ -18.04056228954614 - 3.14159182472768*I}, {-1.768657572661162*^6, -14.385675668959443 - 3.141567100917612*I}, {-4.822736004238638*^-7, 1.1438104361465286249306452885746908615.954589770191005*^13097759 + 8.460030229341480600331623256962727415.954589770191005*^\ 13097758*I}, {1.74894330441059*^-21, 1}, {-7.225049923207683*^9, -22.700819645155836 - 3.141592643719034*I}, {-0.00014743013276286463, \ -1.348556555090803456561360433313032971891612467575752315.\ 954589770191005*^25984 - 5.64044299964862510259651941679518356518725296025248215.\ 954589770191005*^25983*I}} no meaningful without furhter considerations. How unbearable it really is you see in the traditional form: