Hello everybody,
I would like to solve numerically this system of PDEs with the following initial conditions: 
Here is my attempt to do it in Mathematica:
 
clear[\[Phi], \[Chi]];
sol = NDSolve[{
    -2*D[\[Phi][x, t], t, t] + 
      2 D[\[Phi][x, t], x, 
        x] + (Exp (\[Phi][x, t])/
          2)*((D[\[Chi][x, t], t])^2 - (D[\[Chi][x, t], x])^2) - 
      Exp[\[Phi][x, t]]*(Exp[\[Phi][x, t]] - 1) == 0,
    -D[\[Chi][x, t], t, t] + D[\[Chi][x, t], x, x] - 
      D[\[Phi][x, t], t]*D[\[Chi][x, t], t] +  
      D[\[Phi][x, t], x]*D[\[Chi][x, t], x] == 0 ,
      \[Phi][x, 0]  == Exp[-x^2],
     D[\[Phi][0, t], t] == 0,
    \[Chi][x, 0]  == Exp[-x^2],
    D[\[Chi][0, t], t] == 0
    },
   {\[Phi], \[Chi]}, {x, 0, 10}, {t, 0, 10}];
 Plot3D[\[Phi][x, t] /. sol[[1]], {x, 0, 10}, {t, 0, 10}] 
Unfortunately it gives me an unexpected error.
I have reread the code many times but I do not find the error.
Can someone help me please?