# Solve this PDEs system?

Posted 9 months ago
626 Views
|
1 Reply
|
0 Total Likes
|
 Hello everybody,I would like to solve numerically this system of PDEs with the following initial conditions: Here is my attempt to do it in Mathematica: clear[\[Phi], \[Chi]]; sol = NDSolve[{ -2*D[\[Phi][x, t], t, t] + 2 D[\[Phi][x, t], x, x] + (Exp (\[Phi][x, t])/ 2)*((D[\[Chi][x, t], t])^2 - (D[\[Chi][x, t], x])^2) - Exp[\[Phi][x, t]]*(Exp[\[Phi][x, t]] - 1) == 0, -D[\[Chi][x, t], t, t] + D[\[Chi][x, t], x, x] - D[\[Phi][x, t], t]*D[\[Chi][x, t], t] + D[\[Phi][x, t], x]*D[\[Chi][x, t], x] == 0 , \[Phi][x, 0] == Exp[-x^2], D[\[Phi][0, t], t] == 0, \[Chi][x, 0] == Exp[-x^2], D[\[Chi][0, t], t] == 0 }, {\[Phi], \[Chi]}, {x, 0, 10}, {t, 0, 10}]; Plot3D[\[Phi][x, t] /. sol[[1]], {x, 0, 10}, {t, 0, 10}] Unfortunately it gives me an unexpected error.I have reread the code many times but I do not find the error.Can someone help me please?
Answer
1 Reply
Sort By:
Posted 6 months ago
 As it stands (fifth line) (Exp (\[Phi][x,t])/ it is an syntax error. But even that fixed it runs into clear[\[Phi], \[Chi]]; sol = NDSolve[{-2*D[\[Phi][x, t], t, t] + 2 D[\[Phi][x, t], x, x] + (Exp[\[Phi][x, t]]/ 2)*((D[\[Chi][x, t], t])^2 - (D[\[Chi][x, t], x])^2) - Exp[\[Phi][x, t]]*(Exp[\[Phi][x, t]] - 1) == 0, -D[\[Chi][x, t], t, t] + D[\[Chi][x, t], x, x] - D[\[Phi][x, t], t]*D[\[Chi][x, t], t] + D[\[Phi][x, t], x]*D[\[Chi][x, t], x] == 0, \[Phi][x, 0] == Exp[-x^2], D[\[Phi][0, t], t] == 0, \[Chi][x, 0] == Exp[-x^2], D[\[Chi][0, t], t] == 0}, {\[Phi], \[Chi]}, {x, 0, 10}, {t, 0, 10}]; CoefficientArrays::poly: -E^\[Phi] (-1+E^\[Phi])-2 \[Phi]$4455+2 \[Phi]$4458+1/2 E^\[Phi] (\[Chi]$4456^2-\[Chi]$4457^2) is not a polynomial. >> NDSolve::femper: PDE parsing error of {-E^\[Phi] (-1+E^\[Phi])-2 \[Phi]$4455+2 \[Phi]$4458+1/2 E^\[Phi] (\[Chi]$4456^2-\[Chi]$4457^2),-\[Phi]$4459 \[Chi]$4456+\[Phi]$4461 \[Chi]$4457-\[Chi]$4460+\[Chi]$4462}. Inconsistent equation dimensions. >> if your modelling is meaningful and correct, then the first thing (CoefficientArrays::poly) is interesting (see also ref/message/General/poly in Mathematica Help) and can possibly treated by options, i.e. use another solver, else think about inconsistent equation dimensions.
Answer
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments