Group Abstract Group Abstract

Message Boards Message Boards

1
|
8.6K Views
|
4 Replies
|
6 Total Likes
View groups...
Share
Share this post:

Write code for fractional calculus?

Posted 7 years ago

Dear, I'm trying to write some code that need fractional calculus, and I've seen that Mathematica supports it (http://mathworld.wolfram.com/FractionalDerivative .html), however, is there any built in function to work with it? I haven't been able to find any.

Thank you very much, Óscar

POSTED BY: Oscar Peña
4 Replies
Anonymous User
Anonymous User
Posted 7 years ago

I'd love to hear what code requires Fractional Calculus to be useful. Can you cite your source and it's "need" for this?

POSTED BY: Anonymous User
POSTED BY: Mariusz Iwaniuk
Posted 7 years ago

Hi, Thanks for the fast reply and the code! I'll test it right now. However, do you also happen to have the code for the Riesz fractional derivative?

Thanks! Óscar

POSTED BY: Oscar Peña

From this paper:

  RieszD[\[Alpha]_, f_, x_, opts___] := -1/(2*Cos[\[Alpha]*Pi/2])*1/Gamma[\[Alpha]]*(Integrate[(x - t)^(-\[Alpha] - 1) (f /. x -> t), {t, -Infinity, x}, opts, 
  GenerateConditions -> False] + Integrate[(t - x)^(-\[Alpha] - 1) (f /. x -> t), {t, x, Infinity},opts, GenerateConditions -> False])
  RieszD[\[Alpha]_?Positive, f_, x_, opts___] := Module[{m = Ceiling[\[Alpha]]}, D[RieszD[-(m - \[Alpha]), f, x, opts], {x, m}]]

  f[x_] := Exp[-x]
  RieszD[1/2, f[x], x, Assumptions -> x > 0]
  (* -(((1/2 - I/2) E^-x)/Sqrt[2]) *)

  f1[x_] := Sin[x]
  RieszD[1/2, f1[x], x]
  (* (Sqrt[\[Pi]/2] Sqrt[1/x] Sqrt[x] (Cos[x] - Sin[x]) + Sqrt[\[Pi]/2] (Cos[x] + Sin[x]))/(2 Sqrt[2 \[Pi]]) *)

I'm don't know is my code right, because I have not found any examples to check it out?

POSTED BY: Mariusz Iwaniuk
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard