# Maximize values using a grid search?

Posted 1 year ago
1309 Views
|
2 Replies
|
2 Total Likes
|
 I would like to find the maximum value and the optimal ma and md from the above two functions using GRID search. I have tried but it doesn't work. Do you have any ideas? Any different example of the function with the code would also be great. f = Integrate[PDF[NormalDistribution[10*Subscript[m, d], 1*Subscript[m, d]], Subscript[c,i]] * (Subscript[m, d]*Subscript[c, i] - 10) * (1-CDF[NormalDistribution[10*Subscript[m, a], 2*Subscript[m, a]], Subscript[c, i]]), {Subscript[c, i], -Infinity, Infinity}]; g = Integrate[PDF[NormalDistribution[10*Subscript[m, a], 2*Subscript[m, a]], Subscript[c,i]] * (Subscript[m, a]*Subscript[c, i] - 10) * (1-CDF[NormalDistribution[10*Subscript[m, d], 1*Subscript[m, a]], Subscript[c, i]]), {Subscript[c, i], -Infinity, Infinity}]; NMaximize[f, {Subscript[m, d], Subscript[m, a]},Method -> {"RandomSearch"}]; NMaximize[g, {Subscript[m, d], Subscript[m, a]},Method -> {"RandomSearch"}]; The results show just f and g. It doesn't work for NMaximize. The screenshot is as follows:
2 Replies
Sort By:
Posted 1 year ago
 how to start a discussion question as I am new to this blog? thank u Sam
 In[21]:= f[md_?NumericQ, ma_?NumericQ] := NIntegrate[ PDF[NormalDistribution[10*md, md], c]*(md*c - 10)*(1 - CDF[NormalDistribution[10*ma, 2*ma], c]), {c, -Infinity, Infinity}] In[22]:= f[1, 1] Out[22]= -0.178412 In[23]:= NMaximize[{f[md, ma], md >= 0, ma >= 0}, {md, ma}] During evaluation of In[23]:= General::stop: Further output of NIntegrate::slwcon will be suppressed during this calculation. During evaluation of In[23]:= NMaximize::cvdiv: Failed to converge to a solution. The function may be unbounded. Out[23]= {1.80565*10^18, {md -> 3.23597*10^8, ma -> 5.35716*10^11}}