You can weight the
$c_i$ with an indeterminate t^i
, and compute the series as a function of t
:
genus[Q_, n_Integer] :=
Module[{z, x},
SymmetricReduction[
SeriesCoefficient[
Product[ComposeSeries[Series[Q[z], {z, 0, n}],
Series[x[i] z, {z, 0, n}]], {i, 1, n}], n],
Table[x[i], {i, 1, n}],
Table[Subscript[c, i] t^i, {i, 1, n}]][[1]] // FactorTerms]; (* <-- weights t^i *)
AgenusTotal[n_Integer] :=
Total[Table[genus[(Sqrt[#]/2)/Sinh[Sqrt[#]/2] &, i] /. c -> p, {i, 0, n}]];
Series[Sqrt[AgenusTotal[3]], {t, 0, 5}]
You can also take the square root of the series:
Sqrt[Series[AgenusTotal[3], {t, 0, 5}]]
To get rid of the t
, extract the coefficients; they can be added together with Total
:
CoefficientList[Sqrt@Series[AgenusTotal[3], {t, 0, 5}], t] // Simplify
