Message Boards Message Boards

GROUPS:

Generate weighted random numbers

Posted 10 years ago
8497 Views
|
3 Replies
|
3 Total Likes
|
Hi there,

I need to generate weighted random numbers.
The resulting distribution of random numbers should correspond to a scalar function W(a, b).
The function Random[] only gives a uniformly distribution. I think there is a function to generate weighted random numbers, but seems it does not work with a continuously function.
Any ideas how to do this with mathematica? Thanks a lot in advance!

Cheers,
Michael
POSTED BY: Michael Knoerzer
3 Replies
Thanks a lot for your replies. I need to check if I can somehow use a built-in distribution. I am not sure about this.
POSTED BY: Michael Knoerzer
Posted 10 years ago
As Daniel Lichtblau stated, RandomVariate combined with a specific distribution (such as NormalDistribution) does the trick, and Mathematica provides plenty of built-in distributions to play with. One benefit of using built-in distributions is that we can easily and efficiently manipulate them symbolically.

For instance, numeric random variates of a specific distributions are available:
 RandomVariate[NormalDistribution[0, 1], {20}]
 
 (* {0.270132, -1.79075, 0.0748062, 0.715661, 0.617855, 0.202395, \
 -1.01686, -0.125683, 1.5585, 1.42078, 2.04629, -0.309086, -1.33024, \
 0.591959, 0.530648, -0.52868, -1.07803, 0.504637, 0.327951, -0.569275} *)
 
 Variance[%]
 
 (* 0.963508 *)
... but also, it is possible compare this with symbolic result:
Variance[NormalDistribution[0, 1]]

(* 1 *)

EDIT
: This is probably closest to what you want. This is an example directly from Mathematica documentation:
dist = ProbabilityDistribution[(Sqrt[2] / Pi) (1 / (1 + x^4)), {x, -Infinity, Infinity}];
It's important to define the function so that it integrates to unity over range of defined ProbabilityDistribution.
Integrate[(Sqrt[2] / Pi) (1 / (1 + x^4)), {x, -Infinity, Infinity}]

(* 1 *)
Some random variates:
Histogram[RandomVariate[dist, {1000}]]

And symbolic manipulation is possible:
Variance[dist]

(* 1 *)

Also, using TransformedDistribution, we can also map one distribution to another. Let's take inverse function of cumulative distribution function of a normal distribution:
InverseFunction[CDF[NormalDistribution[0, 1]]][x]

(* -Sqrt[2] InverseErfc[2 x] *)
Now we use this to map uniform distribution to above normal distribution:
dist = TransformedDistribution[-Sqrt[2] InverseErfc[2 x], x \[Distributed] UniformDistribution[{0, 1}]];
We can generate transformed numeric random variates this way:
Histogram[RandomVariate[dist, {10000}]]

Also, symbolic manipulation is still possible. Now it's considerably slower, though (first value is runtime in seconds, second is the symbolic result):
Variance[dist] // AbsoluteTiming

(* {2.605953, 1} *)
POSTED BY: Jari Kirma
If your W corresponds to a probability distribution (which I would think is the case) then RandomVariate is meant for this purpose.
POSTED BY: Daniel Lichtblau
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract