Hello Ana Luiza,
first, locate the maxima:
f[x_, y_] := Exp[-y^2 - x^4/4 + x^2];
Plot3D[f[x, y], {x, -2.5`, 2.5`}, {y, -2.5`, 2.5`}]
Zone = Polygon[{{-2.5, -2.5}, {-2.5, 2.5}, {2.5, 2.5}, {2.5, -2.5}}];
Sup1 = ArgMax[f[x, y], {x, y} \[Element] Zone];
Sup2 = {x, y} /. Last@FindMaximum[f[x, y], {x, -1}, {y, 0}];
(AgMax finds a single max).
Then plot
Show[ContourPlot[f[x, y], {x, -2.5`, 2.5`}, {y, -2.5`, 2.5`},
Contours -> {0.5, 0.7, 1.5, 2.0, 2.71}, ContourLabels -> True],
Graphics[{Green, PointSize[Large], Point[Sup1]}]
, Graphics[{Red, PointSize[Large], Point[Sup2]}]]