Group Abstract Group Abstract

Message Boards Message Boards

0
|
5.2K Views
|
5 Replies
|
4 Total Likes
View groups...
Share
Share this post:

[?] Avoid problem with the parametrization of a line integral?

Posted 7 years ago
POSTED BY: Jaime de la Mota
5 Replies

But you could change your integral to a real line-integral of 1st kind by deleting the SquareRoot[ 13 ] from your integrand. I take a constant factor out of the integral:

In[1]:= xx[t_] := 2 t; yy[t_] := 3 t;
varianza = 2;
integral = 
 1/(2 Pi*varianza) Integrate[( Exp[(-1.) ((xx[t])^2 + (yy[t])^2)/(2. varianza)]) Sqrt[
     D[xx[t], t]^2 + D[yy[t], t]^2], {t, 0, 1}]


Out[3]= 0.139526

or

In[4]:= xx[t_] := t Cos[ArcTan[3/2]]; yy[t_] := t Sin[ArcTan[3/2]];
varianza = 2;
integral = 
 1/(2 Pi*varianza) Integrate[( Exp[(-1.) ((xx[t])^2 + (yy[t])^2)/(2. varianza)]) Sqrt[
     D[xx[t], t]^2 + D[yy[t], t]^2], {t, 0, Sqrt[13]}]


Out[6]= 0.139526
POSTED BY: Hans Dolhaine

And another remark. If you really want to do a line integral (1st type of line integral of a function f[ x, y ] along a line { x[ t ], y[ t ] } ) this is defined (there are good reasons for this definition) by

J = Integral[ f[x[t], y[t] ]  Sqrt[D[x[t], t]^2 + D[y[t], t]^2],  {t, t1, t2}]

giving in your case

xx[t_] := 2 t; yy[t_] := 3 t;

In[2]:= varianza = 2;
integral = 
 Integrate[(Sqrt[2^2 + 3^2] Exp[(-1.) ((xx[t])^2 + (yy[t])^2)/(2. varianza)]/(2 Pi*varianza)) Sqrt[
   D[xx[t], t]^2 + D[yy[t], t]^2], {t, 0, 1}]

Out[3]= 0.503068
POSTED BY: Hans Dolhaine
POSTED BY: Hans Dolhaine
POSTED BY: Hans Dolhaine

Thank you very much. This is mostly helpful.

POSTED BY: Jaime de la Mota
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard