And another remark. If you really want to do a line integral (1st type of line integral of a function f[ x, y ] along a line { x[ t ], y[ t ] } ) this is defined (there are good reasons for this definition) by
J = Integral[ f[x[t], y[t] ] Sqrt[D[x[t], t]^2 + D[y[t], t]^2], {t, t1, t2}]
giving in your case
xx[t_] := 2 t; yy[t_] := 3 t;
In[2]:= varianza = 2;
integral =
Integrate[(Sqrt[2^2 + 3^2] Exp[(-1.) ((xx[t])^2 + (yy[t])^2)/(2. varianza)]/(2 Pi*varianza)) Sqrt[
D[xx[t], t]^2 + D[yy[t], t]^2], {t, 0, 1}]
Out[3]= 0.503068