ok, thanks Bill for your comments, here is the code
m1 = 31.8152;
m2 = 11.251952;
mm = 0.680389;
fr = 1000;
fr1 = 1000;
Fdamper = 80 ;(*N*)
vcrit = 130;
(*Data for body 1 - stator *)
ks2 = 9.500*fr1;(*N /mm*)
ks1 = ks2;
lo = 188/fr; (*m*)
xcg1 = -3.65426/fr;
ycg1 = -3.367/fr;
zcg1 = -0.724087/fr;
(*Data for body 2*)
xcg2 = 0.0061/fr;
ycg2 = -14.7063/fr;
zcg2 = -100.2917/fr;
(*Data for body m - imbalance mass *)
xcgm = 230.56/fr;
ycgm = -120.07/fr;
zcgm = 102.09/fr;
(*Data for spring 1 *)(*Spring location on body 1-right*)
x1s1 = 259.080/fr;
y1s1 = 219.4630/fr;
z1s1 = -26.7376/fr;
x0s1 = 306.4260/fr;
y0s1 = 449.5800/fr;(*Spring location on ground*)
z0s1 = -26.7376/fr;
(*Data for spring 2 - left*)
x1s2 = -259.080/fr;
y1s2 = 219.4630/fr;
z1s2 = -26.7376/fr;
x0s2 = -306.4260/fr;
y0s2 = 449.5800/fr;
z0s2 = -26.7376/fr;
(*Data for damper 1 on body 1 -FRD *)
x1d1 = 225.7326/fr;
y1d1 = -224.4966/fr ;(*Front Right Damper*)
z1d1 = 180/fr;
x0d1 = 300.9770/fr;
y0d1 = -431.2290/fr;
z0d1 = 210.6171/fr;
(*Data for damper 2 RRD*)
x1d2 = 225.7326/fr;
y1d2 = -240.776/fr;
z1d2 = -180.0/fr;
x0d2 = 300.9770/fr;
y0d2 = -447.5100/fr;
z0d2 = -149.3819/fr;
(*Data for damper 3 - FLD *)
x1d3 = -225.7326/fr;
y1d3 = -224.4966/fr;
z1d3 = 180.00/fr;
x0d3 = -300.977/fr;
y0d3 = -431.2290/fr;
z0d3 = 210.6181/fr;
(*Data for damper 4 - RLD*)
x1d4 = -225.7326/fr;
y1d4 = -240.7776/fr;
z1d4 = -180.00/fr;
x0d4 = -300.9770/fr;
y0d4 = -447.51/fr;
z0d4 = -149.3819/fr;
cd1 = -0.6154*fr1;(*N s /mm*)
(*Matrices de inercia centroidales*)
Ixx1 = 3506370/fr1^2;
Iyy1 = 1994860/fr1^2;
Izz1 = 2857680/fr1^2;
Ixy1 = 426122/fr1^2;
Ixz1 = 19905.8/fr1^2;
Iyz1 = 147236/fr1^2;
(*Matriz de inercia de rotor*)
Ixx2 = 506081.89/fr1^2;
Iyy2 = 503575.14/fr1^2;
Izz2 = 467128.95/fr1^2;
Ixy2 = -27.96/fr1^2;
Ixz2 = 8.70218/fr1^2;
Iyz2 = 4738.52/fr1^2;
(*Matriz de inercia de masa desbalanceo*)
Ixxm = 1773.24/fr1^2;
Iyym = 1505.01/fr1^2;
Izzm = 592.73/fr1^2;
Ixym = 214.25/fr1^2;
Ixzm = -30.11/fr1^2;
Iyzm = 130.80/fr1^2;
grav = {0, -9.810, 0};
ddq = {ddx, ddy, ddz, dd\[Alpha], dd\[Beta], dd\[Gamma], dd\[Theta]};
dq = {dx, dy, dz, d\[Alpha], d\[Beta], d\[Gamma], d\[Theta]};
r10 = {x, y, z};
Id3 = IdentityMatrix[3];
rcg1p = {xcg1, ycg1, zcg1};
R10 = Rz4[\[Alpha]].Rz5[\[Beta]].Rz6[\[Gamma]];
r0cg1 = r10 + R10.rcg1p;
(*Stator velocity measure on CS 0*)
Srcg1 = Sz1[xcg1] + Sz2[ycg1] + Sz3[zcg1];
R\[Phi]1 = {{Cos[\[Beta]]*Cos[\[Gamma]], Sin[\[Gamma]], 0,
0}, {-Cos[\[Beta]]*Sin[\[Gamma]], Cos[\[Gamma]], 0,
0}, {Sin[\[Beta]], 0, 1, 0}};
Rr1R1 = -R10.Srcg1.R\[Phi]1;
Jac1 = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], Rr1R1[[1, 1]],
Rr1R1[[1, 2]], Rr1R1[[1, 3]], Rr1R1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], Rr1R1[[2, 1]],
Rr1R1[[2, 2]], Rr1R1[[2, 3]], Rr1R1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], Rr1R1[[3, 1]],
Rr1R1[[3, 2]], Rr1R1[[3, 3]], Rr1R1[[3, 4]]}};
V0cg1 = Jac1.dq;
(*Stator angular velocity measure on CS 1*)
ceros = ConstantArray[0, {3, 3}];
(*This matrix transforms the gc located at its cs to cs1 - data from \
cad*)
JB1 = {{ceros[[1, 1]], ceros[[1, 2]], ceros[[1, 3]],
R\[Phi]1[[1, 1]], R\[Phi]1[[1, 2]], R\[Phi]1[[1, 3]],
R\[Phi]1[[1, 4]]},
{ceros[[2, 1]], ceros[[2, 2]], ceros[[2, 3]], R\[Phi]1[[2, 1]],
R\[Phi]1[[2, 2]], R\[Phi]1[[2, 3]], R\[Phi]1[[2, 4]]},
{ceros[[3, 1]], ceros[[3, 2]], ceros[[3, 3]], R\[Phi]1[[3, 1]],
R\[Phi]1[[3, 2]], R\[Phi]1[[3, 3]], R\[Phi]1[[3, 4]]}};
\[Omega]01 = JB1.dq;
rcg2p = {xcg2, ycg2, zcg2};
R20 = Rz4[\[Alpha]].Rz5[\[Beta]].Rz6[\[Gamma]].Rz6[\[Theta]];
r0cg2 = r10 + R20.rcg2p;
(*Velocidad de centro de gravedad rotor*)
Srcg2 = Sz1[xcg2] + Sz2[ycg2] + Sz3[zcg2];
R\[Phi]2 = {{Cos[\[Beta]]*Cos[\[Gamma] + \[Theta]],
Sin[\[Gamma] + \[Theta]], 0,
0}, {-Cos[\[Beta]]*Sin[\[Gamma] + \[Theta]],
Cos[\[Gamma] + \[Theta]], 0, 0}, {Sin[\[Beta]], 0, 1, 1}};
Rr2R1 = -R20.Srcg2.R\[Phi]2;
Jac2 = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], Rr2R1[[1, 1]],
Rr2R1[[1, 2]], Rr2R1[[1, 3]], Rr2R1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], Rr2R1[[2, 1]],
Rr2R1[[2, 2]], Rr2R1[[2, 3]], Rr2R1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], Rr2R1[[3, 1]],
Rr2R1[[3, 2]], Rr2R1[[3, 3]], Rr2R1[[3, 4]]}};
V0cg2 = Jac2.dq;
(*Velocidad angular del rotor medido en su cg*)
JB2 = {{ceros[[1, 1]], ceros[[1, 2]], ceros[[1, 3]],
R\[Phi]2[[1, 1]], R\[Phi]2[[1, 2]], R\[Phi]2[[1, 3]],
R\[Phi]2[[1, 4]]},
{ceros[[2, 1]], ceros[[2, 2]], ceros[[2, 3]], R\[Phi]2[[2, 1]],
R\[Phi]2[[2, 2]], R\[Phi]2[[2, 3]], R\[Phi]2[[2, 4]]},
{ceros[[3, 1]], ceros[[3, 2]], ceros[[3, 3]], R\[Phi]2[[3, 1]],
R\[Phi]2[[3, 2]], R\[Phi]2[[3, 3]], R\[Phi]2[[3, 4]]}};
\[Omega]02 = JB2.dq;
(***********************Cuerpo Masa Desbalanceo**************)
rcgmp = {xcgm, ycgm, zcgm};
r0cgm = r10 + R20.rcgmp;
(*Velocidad de centro de gravedad rotor*)
Srcgm = Sz1[xcgm] + Sz2[ycgm] + Sz3[zcgm];
RrmR1 = -R20.Srcgm.R\[Phi]2;
Jacm = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], RrmR1[[1, 1]],
RrmR1[[1, 2]], RrmR1[[1, 3]], RrmR1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], RrmR1[[2, 1]],
RrmR1[[2, 2]], RrmR1[[2, 3]], RrmR1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], RrmR1[[3, 1]],
RrmR1[[3, 2]], RrmR1[[3, 3]], RrmR1[[3, 4]]}};
V0cgm = Jacm.dq;
(*Velocidad angular del rotor medido en su cg*)
\[Omega]2m = \[Omega]02;
(*RrTR01=-Transpose[R1].Transpose[Srcg1].Transpose[R01];*)
RrTR10 = m1*Transpose[Rr1R1];
J1 = Inercia[Ixx1, Iyy1, Izz1, Ixy1, Ixz1, Iyz1];
RJ1R1 = Transpose[R\[Phi]1].(m1*Transpose[Srcg1].Srcg1 + J1).R\[Phi]1;
Mak1 = {{m1*Id3[[1, 1]], m1*Id3[[1, 2]], m1*Id3[[1, 3]],
m1*Rr1R1[[1, 1]], m1*Rr1R1[[1, 2]], m1*Rr1R1[[1, 3]],
m1*Rr1R1[[1, 4]]},
{m1*Id3[[2, 1]], m1*Id3[[2, 2]], m1*Id3[[2, 3]], m1*Rr1R1[[2, 1]],
m1*Rr1R1[[2, 2]], m1*Rr1R1[[2, 3]], m1*Rr1R1[[2, 4]]},
{m1*Id3[[3, 1]], m1*Id3[[3, 2]], m1*Id3[[3, 3]], m1*Rr1R1[[3, 1]],
m1* Rr1R1[[3, 2]], m1*Rr1R1[[3, 3]], m1*Rr1R1[[3, 4]]},
{RrTR10[[1, 1]], RrTR10[[1, 2]], RrTR10[[1, 3]], RJ1R1[[1, 1]],
RJ1R1[[1, 2]], RJ1R1[[1, 3]], RJ1R1[[1, 4]]},
{RrTR10[[2, 1]], RrTR10[[2, 2]], RrTR10[[2, 3]], RJ1R1[[2, 1]],
RJ1R1[[2, 2]], RJ1R1[[2, 3]], RJ1R1[[2, 4]]},
{RrTR10[[3, 1]], RrTR10[[3, 2]], RrTR10[[3, 3]], RJ1R1[[3, 1]],
RJ1R1[[3, 2]], RJ1R1[[3, 3]], RJ1R1[[3, 4]]}, {RrTR10[[4, 1]],
RrTR10[[4, 2]], RrTR10[[4, 3]], RJ1R1[[4, 1]], RJ1R1[[4, 2]],
RJ1R1[[4, 3]], RJ1R1[[4, 4]]}};
(*K1=1/2*(dq.Mak1.dq);*)
(*Matriz de energiaa Cinetica cuerpo 2*)
RrTR20 = m2*Transpose[Rr2R1];
J2 = Inercia[Ixx2, Iyy2, Izz2, Ixy2, Ixz2, Iyz2];
RJ2R20 = Transpose[R\[Phi]2].(m2*Transpose[Srcg2].Srcg2 + J2).R\[Phi]2;
Mak2 = {{m2*Id3[[1, 1]], m2*Id3[[1, 2]], m2*Id3[[1, 3]],
m2*Rr2R1[[1, 1]], m2*Rr2R1[[1, 2]], m2*Rr2R1[[1, 3]],
m2*Rr2R1[[1, 4]]},
{m2*Id3[[2, 1]], m2*Id3[[2, 2]], m2*Id3[[2, 3]], m2*Rr2R1[[2, 1]],
m2*Rr2R1[[2, 2]], m2*Rr2R1[[2, 3]], m2*Rr2R1[[2, 4]]},
{m2*Id3[[3, 1]], m2*Id3[[3, 2]], m2*Id3[[3, 3]], m2*Rr2R1[[3, 1]],
m2* Rr2R1[[3, 2]], m2*Rr2R1[[3, 3]], m2*Rr2R1[[3, 4]]},
{RrTR20[[1, 1]], RrTR20[[1, 2]], RrTR20[[1, 3]], RJ2R20[[1, 1]],
RJ2R20[[1, 2]], RJ2R20[[1, 3]], RJ2R20[[1, 4]]},
{RrTR20[[2, 1]], RrTR20[[2, 2]], RrTR20[[2, 3]], RJ2R20[[2, 1]],
RJ2R20[[2, 2]], RJ2R20[[2, 3]], RJ2R20[[2, 4]]},
{RrTR20[[3, 1]], RrTR20[[3, 2]], RrTR20[[3, 3]], RJ2R20[[3, 1]],
RJ2R20[[3, 2]], RJ2R20[[3, 3]], RJ2R20[[3, 4]]}, {RrTR20[[4, 1]],
RrTR20[[4, 2]], RrTR20[[4, 3]], RJ2R20[[4, 1]], RJ2R20[[4, 2]],
RJ2R20[[4, 3]], RJ2R20[[4, 4]]}};
(*K2=1/2*(dq.Mak2.dq);*)
(*Matriz de energiaa Cinetica cuerpo masa de desbalanceo*)
RmrTR20 = mm*Transpose[RrmR1];
Jm = Inercia[Ixxm, Iyym, Izzm, Ixym, Ixzm, Iyzm];
RJmR20 = Transpose[R\[Phi]2].(mm*Transpose[Srcgm].Srcgm + Jm).R\[Phi]2;
Makm = {{mm*Id3[[1, 1]], mm*Id3[[1, 2]], mm*Id3[[1, 3]],
mm*RrmR1[[1, 1]], mm*RrmR1[[1, 2]], mm*RrmR1[[1, 3]],
mm*RrmR1[[1, 4]]},
{mm*Id3[[2, 1]], mm*Id3[[2, 2]], mm*Id3[[2, 3]], mm*RrmR1[[2, 1]],
mm*RrmR1[[2, 2]], mm*RrmR1[[2, 3]], mm*RrmR1[[2, 4]]},
{mm*Id3[[3, 1]], mm*Id3[[3, 2]], mm*Id3[[3, 3]], mm*RrmR1[[3, 1]],
mm* RrmR1[[3, 2]], mm*RrmR1[[3, 3]], mm*RrmR1[[3, 4]]},
{RmrTR20[[1, 1]], RmrTR20[[1, 2]], RmrTR20[[1, 3]],
RJmR20[[1, 1]], RJmR20[[1, 2]], RJmR20[[1, 3]], RJmR20[[1, 4]]},
{RmrTR20[[2, 1]], RmrTR20[[2, 2]], RmrTR20[[2, 3]],
RJmR20[[2, 1]], RJmR20[[2, 2]], RJmR20[[2, 3]], RJmR20[[2, 4]]},
{RmrTR20[[3, 1]], RmrTR20[[3, 2]], RmrTR20[[3, 3]], RJmR20[[3, 1]],
RJmR20[[3, 2]], RJmR20[[3, 3]],
RJmR20[[3, 4]]}, {RmrTR20[[4, 1]], RmrTR20[[4, 2]],
RmrTR20[[4, 3]], RJmR20[[4, 1]], RJmR20[[4, 2]], RJmR20[[4, 3]],
RJmR20[[4, 4]]}};
dM111 = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
(*Termino dM/dt (M12)*)
dR10 = D[R10 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dR\[Phi]1 =
D[R\[Phi]1 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dM112 = -m1*(dR10.Srcg1.R\[Phi]1 + R10.Srcg1.dR\[Phi]1);
(*Termino dM/dt (M21)*)
dM121 = Transpose[dM112];
(*Termino dM/dt (M22)*)
dM122 = D[
RJ1R1 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dMak1 = {{dM111[[1, 1]], dM111[[1, 2]], dM111[[1, 3]], dM112[[1, 1]],
dM112[[1, 2]], dM112[[1, 3]], dM112[[1, 4]]},
{dM111[[2, 1]], dM111[[2, 2]], dM111[[2, 3]], dM112[[2, 1]],
dM112[[2, 2]], dM112[[2, 3]], dM112[[2, 4]]},
{dM111[[3, 1]], dM111[[3, 2]], dM111[[3, 3]], dM112[[3, 1]],
dM112[[3, 2]], dM112[[3, 3]], dM112[[3, 4]]},
{dM121[[1, 1]], dM121[[1, 2]], dM121[[1, 3]], dM122[[1, 1]],
dM122[[1, 2]], dM122[[1, 3]], dM122[[1, 4]]},
{dM121[[2, 1]], dM121[[2, 2]], dM121[[2, 3]], dM122[[2, 1]],
dM122[[2, 2]], dM122[[2, 3]], dM122[[2, 4]]},
{dM121[[3, 1]], dM121[[3, 2]], dM121[[3, 3]], dM122[[3, 1]],
dM122[[3, 2]], dM122[[3, 3]], dM122[[3, 4]]}, {dM121[[4, 1]],
dM121[[4, 2]], dM121[[4, 3]], dM122[[4, 1]], dM122[[4, 2]],
dM122[[4, 3]], dM122[[4, 4]]}};
(*D1j=1/2*(Ddqcdqcj.(Mak1+Transpose[Mak1]));
V1j=1/2(Ddqcdqc1.(dMak1+Transpose[dMak1]));*)
(*Terminos de \[PartialD]L/\[PartialD]q*)
(*Termino \[PartialD]Mak1/\[PartialD]q (1,1)*)
dpMa1dpq1 = D[Mak1, x];
dpMa1dpq2 = D[Mak1, y];
dpMa1dpq3 = D[Mak1, z];
dpMa1dpq4 = D[Mak1, \[Alpha]];
dpMa1dpq5 = D[Mak1, \[Beta]];
dpMa1dpq6 = D[Mak1, \[Gamma]];
dpMa1dpq7 = D[Mak1, \[Theta]];
(*V1jp=1/2*(dq.dpMa1dpqj);*)
dpRcg1dpq1 = D[r0cg1, x];
dpRcg1dpq2 = D[r0cg1, y];
dpRcg1dpq3 = D[r0cg1, z];
dpRcg1dpq4 = D[r0cg1, \[Alpha]];
dpRcg1dpq5 = D[r0cg1, \[Beta]];
dpRcg1dpq6 = D[r0cg1, \[Gamma]];
dpRcg1dpq7 = D[r0cg1, \[Theta]];
dM211 = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
(*Termino dM/dt (M12)*)
dR20 = D[R20 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dR\[Phi]2 =
D[R\[Phi]2 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dM212 = -m2*(dR20.Srcg2.R\[Phi]2 + R20.Srcg2.dR\[Phi]2);
(*Termino dM/dt (M21)*)
dM221 = Transpose[dM212];
(*Termino dM/dt (M22)*)
dM222 = D[
RJ2R20 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dMak2 = {{dM211[[1, 1]], dM211[[1, 2]], dM211[[1, 3]], dM212[[1, 1]],
dM212[[1, 2]], dM212[[1, 3]], dM212[[1, 4]]},
{dM211[[2, 1]], dM211[[2, 2]], dM211[[2, 3]], dM212[[2, 1]],
dM212[[2, 2]], dM212[[2, 3]], dM212[[2, 4]]},
{dM211[[3, 1]], dM211[[3, 2]], dM211[[3, 3]], dM212[[3, 1]],
dM212[[3, 2]], dM212[[3, 3]], dM212[[3, 4]]},
{dM221[[1, 1]], dM221[[1, 2]], dM221[[1, 3]], dM222[[1, 1]],
dM222[[1, 2]], dM222[[1, 3]], dM222[[1, 4]]},
{dM221[[2, 1]], dM221[[2, 2]], dM221[[2, 3]], dM222[[2, 1]],
dM222[[2, 2]], dM222[[2, 3]], dM222[[2, 4]]},
{dM221[[3, 1]], dM221[[3, 2]], dM221[[3, 3]], dM222[[3, 1]],
dM222[[3, 2]], dM222[[3, 3]], dM222[[3, 4]]}, {dM221[[4, 1]],
dM221[[4, 2]], dM221[[4, 3]], dM222[[4, 1]], dM222[[4, 2]],
dM222[[4, 3]], dM222[[4, 4]]}};
(*Terminos de \[PartialD]L2/\[PartialD]q*)
(*Termino \[PartialD]Mak2/\[PartialD]q (1,1)*)
dpMa2dpq1 = D[Mak2, x];
dpMa2dpq2 = D[Mak2, y];
dpMa2dpq3 = D[Mak2, z];
dpMa2dpq4 = D[Mak2, \[Alpha]];
dpMa2dpq5 = D[Mak2, \[Beta]];
dpMa2dpq6 = D[Mak2, \[Gamma]];
dpMa2dpq7 = D[Mak2, \[Theta]];
dpRcg2dpq1 = D[r0cg2, x];
dpRcg2dpq2 = D[r0cg2, y];
dpRcg2dpq3 = D[r0cg2, z];
dpRcg2dpq4 = D[r0cg2, \[Alpha]];
dpRcg2dpq5 = D[r0cg2, \[Beta]];
dpRcg2dpq6 = D[r0cg2, \[Gamma]];
dpRcg2dpq7 = D[r0cg2, \[Theta]];
(*Rotor - cuerpo masa de desbalanceo*)
(*Termino dM/dt (M11)*)
dMm11 = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
(*Termino dM/dt (M12)*)
dMm12 = -mm*(dR20.Srcgm.R\[Phi]2 + R20.Srcgm.dR\[Phi]2);
(*Termino dM/dt (M21)*)
dMm21 = Transpose[dMm12];
(*Termino dM/dt (M22)*)
dMm22 = D[
RJmR20 /. {\[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t]},
t] /. {\[Alpha][t] -> \[Alpha], \[Beta][t] -> \[Beta], \[Gamma][
t] -> \[Gamma], \[Theta][t] -> \[Theta],
\!\(\*SuperscriptBox["\[Alpha]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Alpha],
\!\(\*SuperscriptBox["\[Beta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Beta],
\!\(\*SuperscriptBox["\[Gamma]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Gamma],
\!\(\*SuperscriptBox["\[Theta]", "\[Prime]",
MultilineFunction->None]\)[t] -> d\[Theta]};
dMakm = {{dMm11[[1, 1]], dMm11[[1, 2]], dMm11[[1, 3]], dMm12[[1, 1]],
dMm12[[1, 2]], dMm12[[1, 3]], dMm12[[1, 4]]},
{dMm11[[2, 1]], dMm11[[2, 2]], dMm11[[2, 3]], dMm12[[2, 1]],
dMm12[[2, 2]], dMm12[[2, 3]], dMm12[[2, 4]]},
{dMm11[[3, 1]], dMm11[[3, 2]], dMm11[[3, 3]], dMm12[[3, 1]],
dMm12[[3, 2]], dMm12[[3, 3]], dMm12[[3, 4]]},
{dMm21[[1, 1]], dMm21[[1, 2]], dMm21[[1, 3]], dMm22[[1, 1]],
dMm22[[1, 2]], dMm22[[1, 3]], dMm22[[1, 4]]},
{dMm21[[2, 1]], dMm21[[2, 2]], dMm21[[2, 3]], dMm22[[2, 1]],
dMm22[[2, 2]], dMm22[[2, 3]], dMm22[[2, 4]]},
{dMm21[[3, 1]], dMm21[[3, 2]], dMm21[[3, 3]], dMm22[[3, 1]],
dMm22[[3, 2]], dMm22[[3, 3]], dMm22[[3, 4]]}, {dMm21[[4, 1]],
dMm21[[4, 2]], dMm21[[4, 3]], dMm22[[4, 1]], dMm22[[4, 2]],
dMm22[[4, 3]], dMm22[[4, 4]]}};
(*Terminos de \[PartialD]L2/\[PartialD]q*)
(*Termino \[PartialD]Mak2/\[PartialD]q (1,1)*)
dpMamdpq1 = D[Makm, x];
dpMamdpq2 = D[Makm, y];
dpMamdpq3 = D[Makm, z];
dpMamdpq4 = D[Makm, \[Alpha]];
dpMamdpq5 = D[Makm, \[Beta]];
dpMamdpq6 = D[Makm, \[Gamma]];
dpMamdpq7 = D[Makm, \[Theta]];
dpRcgmdpq1 = D[r0cgm, x];
dpRcgmdpq2 = D[r0cgm, y];
dpRcgmdpq3 = D[r0cgm, z];
dpRcgmdpq4 = D[r0cgm, \[Alpha]];
dpRcgmdpq5 = D[r0cgm, \[Beta]];
dpRcgmdpq6 = D[r0cgm, \[Gamma]];
dpRcgmdpq7 = D[r0cgm, \[Theta]];
(*Fuerzas generaizadas*)
(*Fuerzas por resorte 1 -right front*)
(*Fuerzas por resorte 1 -right front*)
r0s1g = {x0s1, y0s1, z0s1}; (*medido inercialmente*)
(*vector pos, CS1,body 1,i-esim spring*)
r1s11p = {x1s1, y1s1, z1s1};
r0s11 = r10 + R10.r1s11p;
ds1 = r0s1g - r0s11;
ys1u = ds1/Norm[ds1];
Lo = lo; (*initial spring lenght*)
fs1 = ks1*(Norm[ds1] - Lo);
Fs1 = fs1*ys1u; (*Does the force needs to be defined in inertial CS?*)
(*Fuerzas por resortes*)
r0s2g = {x0s2, y0s2, z0s2}; (*medido inercialmente*)
(*vector pos, CS1,body 1,i-esim spring*)
r1s21p = {x1s2, y1s2, z1s2};
r0s21 = r10 + R10.r1s21p;
ds2 = r0s2g - r0s21;
ys2u = ds2/Norm[ds2];
Lo = lo; (*initial spring lenght*)
fs2 = ks2*(Norm[ds2] - Lo);
Fs2 = fs2*ys2u; (*Does the force needs to be defined in inertial CS?*)
(*Fuerzas por amortiguadores*)
(*Damper Right front damper*)
(*Fuerzas por amortiguadores*)
(*Damper Right front damper*)
rd11 = {x1d1, y1d1, z1d1};
rd1g = {x0d1, y0d1, z0d1};
dd1 = rd1g - (r10 + R10.rd11);
Sd11 = Sz1[x1d1] + Sz2[y1d1] + Sz3[z1d1];
Rd11R1 = -R10.Sd11.R\[Phi]1; (*write damper position as function of \
dqc*)
d1J = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], Rd11R1[[1, 1]],
Rd11R1[[1, 2]], Rd11R1[[1, 3]], Rd11R1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], Rd11R1[[2, 1]],
Rd11R1[[2, 2]], Rd11R1[[2, 3]], Rd11R1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], Rd11R1[[3, 1]],
Rd11R1[[3, 2]], Rd11R1[[3, 3]], Rd11R1[[3, 4]]}};
V0d1 = d1J.dq;
dLd1 = -V0d1;
yd1u = dd1/Norm[dd1];
fd1 = -cd1*(dLd1.yd1u);
rd12 = {x1d2, y1d2, z1d2};
rd2g = {x0d2, y0d2, z0d2};
dd2 = rd2g - (r10 + R10.rd12);
Sd12 = Sz1[x1d2] + Sz2[y1d2] + Sz3[z1d2];
Rd12R1 = -R10.Sd12.R\[Phi]1; (*write damper position as function of \
dqc*)
d2J = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], Rd12R1[[1, 1]],
Rd12R1[[1, 2]], Rd12R1[[1, 3]], Rd12R1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], Rd12R1[[2, 1]],
Rd12R1[[2, 2]], Rd12R1[[2, 3]], Rd12R1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], Rd12R1[[3, 1]],
Rd12R1[[3, 2]], Rd12R1[[3, 3]], Rd12R1[[3, 4]]}};
V0d2 = d2J.dq;
dLd2 = -V0d2;
yd2u = dd2/Norm[dd2];
fd2 = -cd1*(dLd2.yd2u);
(*Fd2=fd2*yd2u; fddddddddddddddddddddddddddddddddd*)
(*Damper Front Left damper*)
rd13 = {x1d3, y1d3, z1d3};
rd3g = {x0d3, y0d3, z0d3};
dd3 = rd3g - (r10 + R10.rd13);
Sd13 = Sz1[x1d3] + Sz2[y1d3] + Sz3[z1d3];
Rd13R1 = -R10.Sd13.R\[Phi]1; (*write damper position as function of \
dqc*)
d3J = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], Rd13R1[[1, 1]],
Rd13R1[[1, 2]], Rd13R1[[1, 3]], Rd13R1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], Rd13R1[[2, 1]],
Rd13R1[[2, 2]], Rd13R1[[2, 3]], Rd13R1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], Rd13R1[[3, 1]],
Rd13R1[[3, 2]], Rd13R1[[3, 3]], Rd13R1[[3, 4]]}};
V0d3 = d3J.dq;
dLd3 = -V0d3;
yd3u = dd3/Norm[dd3];
fd3 = -cd1*(dLd3.yd3u);
(*Fd3=fd3*yd3u; fddddddddddddddddddddddddddddddddd*)
(*Damper RearLeft damper*)
rd14 = {x1d4, y1d4, z1d4};
rd4g = {x0d4, y0d4, z0d4};
dd4 = rd4g - (r10 + R10.rd14);
Sd14 = Sz1[x1d4] + Sz2[y1d4] + Sz3[z1d4];
Rd14R1 = -R10.Sd14.R\[Phi]1; (*write damper position as function of \
dqc*)
d4J = {{Id3[[1, 1]], Id3[[1, 2]], Id3[[1, 3]], Rd14R1[[1, 1]],
Rd14R1[[1, 2]], Rd14R1[[1, 3]], Rd14R1[[1, 4]]},
{Id3[[2, 1]], Id3[[2, 2]], Id3[[2, 3]], Rd14R1[[2, 1]],
Rd14R1[[2, 2]], Rd14R1[[2, 3]], Rd14R1[[2, 4]]},
{Id3[[3, 1]], Id3[[3, 2]], Id3[[3, 3]], Rd14R1[[3, 1]],
Rd14R1[[3, 2]], Rd14R1[[3, 3]], Rd14R1[[3, 4]]}};
V0d4 = d4J.dq;
dLd4 = -V0d4;
yd4u = dd4/Norm[dd4];
fd4 = -cd1*(dLd4.yd4u);
(*Fd4=fd4*yd4u; fddddddddddddddddddddddddddddddddd*)
MTR2\[Phi]R20 = Transpose[R\[Phi]2].Transpose[R20];
M\[Omega] = {0, 0, -4.0}
(*M0=Transpose[R10.R\[Phi]1].(MR10rs11.Fs1+MR10rs21.Fs2+MR10rd11.Fd1+\
MR10rd12.Fd2+MR10rd13.Fd3+MR10rd14.Fd4)+MTR2\[Phi]R20.M\[Omega];*)
(*Fexc=(R01.Transpose[R13].ku).M\[Omega];*)
Ss1 = Sz1[x1s1] + Sz2[y1s1] + Sz3[z1s1];
Ss2 = Sz1[x1s2] + Sz2[y1s2] + Sz3[z1s2];
MR10rs11 = -Transpose[R\[Phi]1].Transpose[Ss1].Transpose[R10];
MR10rs21 = -Transpose[R\[Phi]1].Transpose[Ss2].Transpose[R10];
MR10rd11 = -Transpose[R\[Phi]1].Transpose[Sd11].Transpose[R10];
MR10rd12 = -Transpose[R\[Phi]1].Transpose[Sd12].Transpose[R10];
MR10rd13 = -Transpose[R\[Phi]1].Transpose[Sd13].Transpose[R10];
MR10rd14 = -Transpose[R\[Phi]1].Transpose[Sd14].Transpose[R10];
M0 = MR10rs11.Fs1 + MR10rs21.Fs2 + MR10rd11.Fd1 + MR10rd12.Fd2 +
MR10rd13.Fd3 + MR10rd14.Fd4 + MTR2\[Phi]R20.M\[Omega];
(*Q={F0[[1]],F0[[2]],F0[[3]],M0[[1]],M0[[2]],M0[[3]],M0[[4]]}/.{x->x[\
t],y->y[t],z->z[t],\[Alpha]->\[Alpha][t],\[Beta]->\[Beta][t],\[Gamma]-\
>\[Gamma][t],\[Theta]->\[Theta][t],dx->x'[t],dy->y'[t],dz->z'[t],d\
\[Alpha]->\[Alpha]'[t],d\[Beta]->\[Beta]'[t],d\[Gamma]->\[Gamma]'[t],\
d\[Theta]->\[Theta]'[t],ddx->x''[t],ddy->y''[t],ddz->z''[t],dd\[Alpha]\
->\[Alpha]''[t],dd\[Beta]->\[Beta]''[t],dd\[Gamma]->\[Gamma]''[t],dd\
\[Theta]->\[Theta]''[t]};*)
(*Ecuacion final*)
Ddqcdqc1 = {1, 0, 0, 0, 0, 0, 0};
Ddqcdqc2 = {0, 1, 0, 0, 0, 0, 0};
Ddqcdqc3 = {0, 0, 1, 0, 0, 0, 0};
Ddqcdqc4 = {0, 0, 0, 1, 0, 0, 0};
Ddqcdqc5 = {0, 0, 0, 0, 1, 0, 0};
Ddqcdqc6 = {0, 0, 0, 0, 0, 1, 0};
Ddqcdqc7 = {0, 0, 0, 0, 0, 0, 1};
D11 = Ddqcdqc1.(Mak1 + Transpose[Mak1]);
D12 = Ddqcdqc2.(Mak1 + Transpose[Mak1]);
D13 = Ddqcdqc3.(Mak1 + Transpose[Mak1]);
D14 = Ddqcdqc4.(Mak1 + Transpose[Mak1]);
D15 = Ddqcdqc5.(Mak1 + Transpose[Mak1]);
D16 = Ddqcdqc6.(Mak1 + Transpose[Mak1]);
D17 = Ddqcdqc7.(Mak1 + Transpose[Mak1]);
D21 = Ddqcdqc1.(Mak2 + Transpose[Mak2]);
D22 = Ddqcdqc2.(Mak2 + Transpose[Mak2]);
D23 = Ddqcdqc3.(Mak2 + Transpose[Mak2]);
D24 = Ddqcdqc4.(Mak2 + Transpose[Mak2]);
D25 = Ddqcdqc5.(Mak2 + Transpose[Mak2]);
D26 = Ddqcdqc6.(Mak2 + Transpose[Mak2]);
D27 = Ddqcdqc7.(Mak2 + Transpose[Mak2]);
Dm1 = Ddqcdqc1.(Makm + Transpose[Makm]);
Dm2 = Ddqcdqc2.(Makm + Transpose[Makm]);
Dm3 = Ddqcdqc3.(Makm + Transpose[Makm]);
Dm4 = Ddqcdqc4.(Makm + Transpose[Makm]);
Dm5 = Ddqcdqc5.(Makm + Transpose[Makm]);
Dm6 = Ddqcdqc6.(Makm + Transpose[Makm]);
Dm7 = Ddqcdqc7.(Makm + Transpose[Makm]);
V11 = Ddqcdqc1.(dMak1 + Transpose[dMak1]);
V12 = Ddqcdqc2.(dMak1 + Transpose[dMak1]);
V13 = Ddqcdqc3.(dMak1 + Transpose[dMak1]);
V14 = Ddqcdqc4.(dMak1 + Transpose[dMak1]);
V15 = Ddqcdqc5.(dMak1 + Transpose[dMak1]);
V16 = Ddqcdqc6.(dMak1 + Transpose[dMak1]);
V17 = Ddqcdqc7.(dMak1 + Transpose[dMak1]);
V21 = Ddqcdqc1.(dMak2 + Transpose[dMak2]);
V22 = Ddqcdqc2.(dMak2 + Transpose[dMak2]);
V23 = Ddqcdqc3.(dMak2 + Transpose[dMak2]);
V24 = Ddqcdqc4.(dMak2 + Transpose[dMak2]);
V25 = Ddqcdqc5.(dMak2 + Transpose[dMak2]);
V26 = Ddqcdqc6.(dMak2 + Transpose[dMak2]);
V27 = Ddqcdqc7.(dMak2 + Transpose[dMak2]);
Vm1 = Ddqcdqc1.(dMakm + Transpose[dMakm]);
Vm2 = Ddqcdqc2.(dMakm + Transpose[dMakm]);
Vm3 = Ddqcdqc3.(dMakm + Transpose[dMakm]);
Vm4 = Ddqcdqc4.(dMakm + Transpose[dMakm]);
Vm5 = Ddqcdqc5.(dMakm + Transpose[dMakm]);
Vm6 = Ddqcdqc6.(dMakm + Transpose[dMakm]);
Vm7 = Ddqcdqc7.(dMakm + Transpose[dMakm]);
V11p = dq.dpMa1dpq1;
V12p = dq.dpMa1dpq2;
V13p = dq.dpMa1dpq3;
V14p = dq.dpMa1dpq4;
V15p = dq.dpMa1dpq5;
V16p = dq.dpMa1dpq6;
V17p = dq.dpMa1dpq7;
V21p = dq.dpMa2dpq1;
V22p = dq.dpMa2dpq2;
V23p = dq.dpMa2dpq3;
V24p = dq.dpMa2dpq4;
V25p = dq.dpMa2dpq5;
V26p = dq.dpMa2dpq6;
V27p = dq.dpMa2dpq7;
Vm1p = dq.dpMa2dpq1;
Vm2p = dq.dpMa2dpq2;
Vm3p = dq.dpMa2dpq3;
Vm4p = dq.dpMa2dpq4;
Vm5p = dq.dpMa2dpq5;
Vm6p = dq.dpMa2dpq6;
Vm7p = dq.dpMa2dpq7;
C11p = m1*(grav.dpRcg1dpq1);
C12p = m1*(grav.dpRcg1dpq2);
C13p = m1*(grav.dpRcg1dpq3);
C14p = m1*(grav.dpRcg1dpq4);
C15p = m1*(grav.dpRcg1dpq5);
C16p = m1*(grav.dpRcg1dpq6);
C17p = m1*(grav.dpRcg1dpq7);
C21p = m2*(grav.dpRcg2dpq1);
C22p = m2*(grav.dpRcg2dpq2);
C23p = m2*(grav.dpRcg2dpq3);
C24p = m2*(grav.dpRcg2dpq4);
C25p = m2*(grav.dpRcg2dpq5);
C26p = m2*(grav.dpRcg2dpq6);
C27p = m2*(grav.dpRcg2dpq7);
Cm1p = mm*(grav.dpRcgmdpq1);
Cm2p = mm*(grav.dpRcgmdpq2);
Cm3p = mm*(grav.dpRcgmdpq3);
Cm4p = mm*(grav.dpRcgmdpq4);
Cm5p = mm*(grav.dpRcgmdpq5);
Cm6p = mm*(grav.dpRcgmdpq6);
Cm7p = mm*(grav.dpRcgmdpq7);
MD = 1/2*{D11 + D21 + Dm1, D12 + D22 + Dm2, D13 + D23 + Dm3,
D14 + D24 + Dm4, D15 + D25 + Dm5, D16 + D26 + Dm6,
D17 + D27 + Dm7};
MV = 1/2*{V11 + V21 + Vm1 - (V11p + V21p + Vm1p),
V12 + V22 + Vm2 - (V12p + V22p + Vm2p),
V13 + V23 + Vm3 - (V13p + V23p + Vm3p),
V14 + V24 + Vm4 - (V14p + V24p + Vm4p),
V15 + V25 + Vm5 - (V15p + V25p + Vm5p),
V16 + V26 + Vm6 - (V16p + V26p + Vm6p),
V17 + V27 + Vm7 - (V17p + V27p + Vm7p)};
MC = {C11p + C21p + Cm1p,
C12p + C22p + Cm2p,
C13p + C23p + Cm3p,
C14p + C24p + Cm4p,
C15p + C25p + Cm5p,
C16p + C26p + Cm6p,
C17p + C27p + Cm7p};
ec1 = MD.ddq + MV.dq - MC /. {x -> x[t], y -> y[t],
z -> z[t], \[Alpha] -> \[Alpha][t], \[Beta] -> \[Beta][
t], \[Gamma] -> \[Gamma][t], \[Theta] -> \[Theta][t],
dx -> x'[t], dy -> y'[t], dz -> z'[t], d\[Alpha] -> \[Alpha]'[t],
d\[Beta] -> \[Beta]'[t], d\[Gamma] -> \[Gamma]'[t],
d\[Theta] -> \[Theta]'[t], ddx -> x''[t], ddy -> y''[t],
ddz -> z''[t], dd\[Alpha] -> \[Alpha]''[t],
dd\[Beta] -> \[Beta]''[t], dd\[Gamma] -> \[Gamma]''[t],
dd\[Theta] -> \[Theta]''[t]};
tf = 15;
MemoryConstrained[
sol1 = NDSolve[{ec1[[1]] == Q[[1]], ec1[[2]] == Q[[2]],
ec1[[3]] == Q[[3]], ec1[[4]] == Q[[4]], ec1[[5]] == Q[[5]],
ec1[[6]] == Q[[6]], ec1[[7]] == Q[[7]], x[0] == 0, y[0] == 0,
z[0] == 0, \[Alpha][0] == 0, \[Beta][0] == 0, \[Gamma][0] ==
0, \[Theta][0] == 0, x'[0] == 0, y'[0] == 0,
z'[0] == 0, \[Alpha]'[0] == 0, \[Beta]'[0] == 0, \[Gamma]'[0] ==
0, \[Theta]'[0] == 0}, {x, y,
z, \[Alpha], \[Beta], \[Gamma], \[Theta]}, {t, 0, tf},
MaxSteps -> \[Infinity]], Infinity];
On my understanding of how to programm a conditional I will do that,
vcrit = 130;
Fdam = 80;
equaciones = {ec1[[1]] ==
If[(y' >= vcrit),
{Fd1 = Sign[y']*Fdam*yd1u;
Fd2 = Sign[y']*Fdam*yd2u;
Fd3 = Sign[y']*Fdam*yd3u;
Fd4 = Sign[y']*Fdam*yd4u;
F0 = Fs1 + Fs2 + Fd1 + Fd2 + Fd3 + Fd4;
Q = {F0[[1]], F0[[2]], F0[[3]], M0[[1]], M0[[2]], M0[[3]],
M0[[4]]} /. {x -> x, y -> y,
z -> z, \ -> \, \ -> \[
t], \ -> \, \ -> \,
dx -> x', dy -> y', dz -> z',
d\ -> \', d\ -> \',
d\ -> \', d\ -> \',
ddx -> x'', ddy -> y'', ddz -> z'',
dd\ -> \'', dd\ -> \'',
dd\ -> \'', dd\ -> \''};
},
{Fd1 = fd1*yd1u;
Fd2 = fd2*yd2u;
Fd3 = fd3*yd3u;
Fd4 = fd4*yd4u;
}
]}
But I know that in Mathematica there are some "methods" to stop the integration, so, as a begineer I don't how to do that.