Well, of course you have to execute the whole code - I posted above the changed part only! OK, it then reads:
ClearAll["Global`*"]
d = 4; y = {t, r, \[Theta], \[Phi]};
G = {{-(E^(2 X[t, r])), 0, 0, 0}, {0, (E^(2 Y[t, r])), 0, 0}, {0, 0,
r^2, 0}, {0, 0, 0, r^2 Sin[\[Theta]]^2}};
IG = Inverse[G];
\[CapitalGamma] =
Inactivate[
Table[1/2*
Sum[IG[[i, l]]*(D[G[[j, l]], y[[k]]] + D[G[[k, l]], y[[j]]] -
D[G[[j, k]], y[[l]]]), {l, 1, d}], {i, 1, d}, {j, 1, d}, {k,
1, d}], D];
Rct = Inactivate[
Table[D[\[CapitalGamma][[i, l, j]], y[[k]]] -
D[\[CapitalGamma][[i, l, k]], y[[j]]] +
Sum[\[CapitalGamma][[i, k, a]]*\[CapitalGamma][[a, l, j]], {a, 1,
d}] - Sum[\[CapitalGamma][[i, l, b]]*\[CapitalGamma][[b, k,
j]], {b, 1, d}], {i, 1, d}, {j, 1, d}, {k, 1, d}, {l, 1, d}],
D];
rct = Table[Sum[Rct[[c, i, c, j]], {c, 1, d}], {i, 1, d}, {j, 1, d}];
rct
This gives a lengthy result, but with unresolved partial derivatives. Is it this you want?