Hi,
I am wondering how I would view the following list as a Gaussian Distribution, where I could identify the mean and 2 s.d. of the list on the PDF Plot?
I've tried EmpiricalDistribution, but this does not seem to be the right approach for the Gaussian Distribution.
Any Suggestions?
list1 = {19.90242780218157, 19.68010673392892, 19.644108173664726,
19.640161036048497, 19.71134294036299, 19.710843903682065,
19.348711494095,
19.87457341673222, 19.843149344572304, 19.366402930537546,
19.46582125513058, 20.179314461998622, 25.541862883930044,
19.642044011126266, 18.68815531383665, 19.476250955396374,
20.34490566085163, 19.92509346795489, 19.82482925700683,
18.9986333499863,
19.345141870484063, 22.16163276517112, 18.881987107758984,
24.67205800311023, 20.087426600019292, 24.837569542980948,
20.22654181669474, 19.815367646057503, 20.4993492485762,
18.770072837352416,
24.615113344370727, 22.591146458469773, 25.19963872417463,
19.21125512237683, 19.597100593046655, 25.405469850749444,
24.523725860256388, 19.32387337221414, 19.22207841240215,
22.337489671951015, 20.588791990739647, 20.24687604222495,
22.149000150282767, 19.123810932617655, 25.91119977401667,
19.69608340834502, 18.761227667322864, 25.08768063538005,
21.366439780106163, 22.252925220446418, 25.584530633451017,
19.85561856759682, 20.85995800444034, 20.146301887571305,
26.00479521720087,
20.048537465325865, 19.407796368833736, 25.45600836006285,
24.409771228581576, 20.743645580625817, 20.22641893334154,
19.055834156182968, 20.476827176226394, 18.725419320548355,
19.72943538745961, 20.20172062841312, 20.32195605021778,
18.900978039083597,
21.060392281672865, 19.41099418840363, 24.194807568136554,
22.201031971608934, 24.384382432882802, 18.99315611948879,
20.392146376675537, 20.14241527284407, 26.144065324696864,
19.63853520090626, 21.272512575566964, 19.862761317999325,
19.569302659068786, 24.965171815799252, 24.679432391660605,
19.008660235489227, 20.147952561189626, 20.002425446739668,
25.31512460547045, 25.779591150153724, 24.1348173716589,
24.97275960292143,
24.1635046301929, 22.90235461944323, 25.53460661722764,
25.340349705660778,
21.045792235569014, 20.55868670235156, 19.180626437510483,
19.064982151406053, 20.419812825750977, 25.94213224076066}