Message Boards Message Boards

GROUPS:

Use Parallel with Cuba library?

Posted 12 days ago
84 Views
|
0 Replies
|
0 Total Likes
|

Hello, is possible use Parallel with Cuba ?

i have some integrals like this,

Subscript[xm, G00][m_] := Nc/fk*\!\(
\*SubsuperscriptBox[\(\[Sum]\), \(a = 1\), \(2\)]\(
\*SubsuperscriptBox[\(\[Sum]\), \(i = 1\), \(2\)]\(
\*SubsuperscriptBox[\(\[Sum]\), \(b = 1\), \(2\)]\(
\*SubsuperscriptBox[\(\[Sum]\), \(j = 1\), \(2\)]Sz[kmais]*
        Sz[kmenos]*\((
\*SubscriptBox[\(U\), \(G00\)] - 
\*SubscriptBox[\(U\), \(G01\)] - 
\*SubscriptBox[\(U\), \(G02\)])\)*
\*SuperscriptBox[
SubscriptBox[\(\[CapitalLambda]\), \(G0\)], \(2*
\*SubscriptBox[\(n\), \(G00\)]\)]*Vegas[Re[\ \[Rho][\[Alpha], 
\*SubscriptBox[\(\[Nu]\), \(G00\)]]*
\*SuperscriptBox[\(x1\), \(
\*SubscriptBox[\(n\), \(G00\)] - 1\)]*
\*FractionBox[\(
\*SuperscriptBox[\((\(-1\))\), \(m + 1\)] 
\*SuperscriptBox[\(f[\[Alpha], x1, x2]\), \(m - 1\)]\), \(18*
\*SuperscriptBox[\((4*\[Pi])\), \(2\)]\)]*\((
\*FractionBox[\(4*\((m - \((\((3 + m)\)*
\*SuperscriptBox[\(f[\[Alpha], x1, x2]\), \(2\)])\))\)\), 
SuperscriptBox[\(
\(\*SubscriptBox[\(\[CapitalDelta]\), \(G0\)]\)[P2, Sm, \[Alpha], x1, 
                x2, 
\*SubscriptBox[\(\[CapitalLambda]\), \(G0\)]]\), \(
\*SubscriptBox[\(n\), \(G00\)] - 1\)]] + 
\*FractionBox[\(9*
\*SuperscriptBox[\(f[\[Alpha], x1, 
                 x2]\), \(2\)]*\((\(-4\)*Sm[kmais]*\ Sm[kmenos] + 
                 P2*\((2 - 
\*SuperscriptBox[\(f[\[Alpha], x1, x2]\), \(2\)])\))\)\), 
SuperscriptBox[\(
\(\*SubscriptBox[\(\[CapitalDelta]\), \(G0\)]\)[P2, Sm, \[Alpha], x1, 
                x2, 
\*SubscriptBox[\(\[CapitalLambda]\), \(G0\)]]\), 
SubscriptBox[\(n\), \(G00\)]]])\)\[IndentingNewLine]], {\[Alpha], \
\(-1\), 1}, {x1, 0, 1}, {x2, 0, 1 - x1}, Verbose -> 0]\)\)\)\) // Quiet

where `f[\[Alpha]_, x1_, x2_] ,[Rho][[Alpha], [Nu]] and Subscript[[CapitalDelta], G0][P2, Sm, [Alpha], x1, x2, Subscript[[CapitalLambda], G0] are a functions,

f[\[Alpha]_, x1_, x2_] := (1 - 2*x2 - (1 - \[Alpha])*x1);
\[Rho][\[Alpha]_, \[Nu]_] := 
  Gamma[\[Nu] + 3/2]/(
   Gamma[\[Nu] + 1]*Gamma[1/2])*(1 - \[Alpha]^2)^\[Nu]; 

Subscript[\[CapitalDelta], G0][P2, Sm, \[Alpha], x1, x2, 
   Subscript[\[CapitalLambda], 
   G0]] = -P2/4*
    f[\[Alpha], x1, 
     x2]^2 + (1 - x1)*(P2 + Sm[kmais]^2) + (Sm[kmenos]^2 - 
      Sm[kmais]^2)*x2 + Subscript[\[CapitalLambda], G0]^2 *x1;

and

Sz[kmais] = Subscript[zx, {a, i}];
Sz[kmenos] = Subscript[zy, {b, j}];
Sm[kmais] = Subscript[mx, {a, i}];
Sm[kmenos] = Subscript[my, {b, j}];

is a sum.

The other values like U00 or lambda is paramters.

I need to calculate this integral for m = 1 , 2 , 3 ,4 .....50, but the time spent to calculate is very large, would it be possible to use the parallel in the cuba to be using the 4 cores of the processor and optimizing the calculation time?

Thanks

Attachments:
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract