You can complete the square to verify that you have a circle of radius
$\sqrt{5}$ centered at (3,1).
x^2 + y^2 - 6 x - 2 y + 5 == (x - 3)^2 + (y - 1)^2 - 5 // Simplify
(* True *)
There are two solutions for
$k$. You can use the GeometricScene functionality (new in v12) to create a nice looking scene based on geometric constraints. For example:
positivek =
RandomInstance[
GeometricScene[{{o -> {0, 0}, a, b,
c -> {3, 1}}, {r -> Sqrt[5]}}, {circ = Circle[c, r],
EuclideanDistance[c, a] == EuclideanDistance[c, b],
EuclideanDistance[c, a] == r,
PlanarAngle[{a, c, b}] == 90 Degree ,
GeometricAssertion[{o, a, b}, "Collinear"]}], RandomSeeding -> 1]
negativek =
RandomInstance[
GeometricScene[{{o -> {0, 0}, a, b,
c -> {3, 1}}, {r -> Sqrt[5]}}, {circ = Circle[c, r],
EuclideanDistance[c, a] == EuclideanDistance[c, b],
EuclideanDistance[c, a] == r,
PlanarAngle[{a, c, b}] == 90 Degree ,
GeometricAssertion[{o, a, b}, "Collinear"]}], RandomSeeding -> 4]
Now, you can calculate the slopes for the positive and negative case using the "Points" property of the scene.
a[[2]]/a[[1]] /. positivek["Points"] (* 1.127711849064953` *)
a[[2]]/a[[1]] /. negativek["Points"](* -0.20463492598802976` *)
If desired, you can view the GeometricScene of both arcs on single plot.
RandomInstance[
GeometricScene[{{o -> {0, 0}, a, b, c -> {3, 1}, d,
e}, {r -> Sqrt[5]}}, {circ = Circle[c, r],
EuclideanDistance[c, a] == EuclideanDistance[c, b] ==
EuclideanDistance[c, d] == EuclideanDistance[c, e] == r,
PlanarAngle[{a, c, b}] == PlanarAngle[{d, c, e}] == 90 Degree,
GeometricAssertion[{o, a, b}, "Collinear"],
GeometricAssertion[{o, d, e}, "Collinear"],
GeometricAssertion[{a, d}, "Distinct"]}], RandomSeeding -> 2]
Finally, the FindGeometricConjectures function can help you discover other geometric relationships in the scene.
FindGeometricConjectures[
RandomInstance[
GeometricScene[{{o -> {0, 0}, a, b, c -> {3, 1}, d,
e}, {r -> Sqrt[5]}}, {circ = Circle[c, r],
EuclideanDistance[c, a] == EuclideanDistance[c, b] ==
EuclideanDistance[c, d] == EuclideanDistance[c, e] == r,
PlanarAngle[{a, c, b}] == PlanarAngle[{d, c, e}] == 90 Degree,
GeometricAssertion[{o, a, b}, "Collinear"],
GeometricAssertion[{o, d, e}, "Collinear"],
GeometricAssertion[{a, d}, "Distinct"]}], RandomSeeding -> 2]]