Maybe you can try executing you code on WOLFRAM CLOUD.You must only sign in.
Using version 12.0,I have:
$Version
(* "12.0.0 for Microsoft Windows (64-bit) (April 6, 2019)"*)
ser = Series[(BesselK[1, Sqrt[s + g]]/BesselK[0, Sqrt[s + g]] - 1)/(2*s*Sqrt[s + g]), {s, Infinity, 8}];
analcoeffs = Table[Together[Simplify[SeriesCoefficient[ser, -i/2]/Gamma[i/2]]], {i, 0, 16}]
(* {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} *)
ser = Series[(BesselK[1, Sqrt[s + g]]/BesselK[0, Sqrt[s + g]] - 1)/(2*s*Sqrt[s + g]), {s, Infinity, 8}];
analcoeffs = Table[Together[Simplify[SeriesCoefficient[ser, i/2]/Gamma[i/2]]], {i, 0, 16}]
(*{0, 0, 0, 0, 1/4, -(1/(12 Sqrt[\[Pi]])),
1/32 (1 - 4 g), (-25 + 24 g)/(480 Sqrt[\[Pi]]),
1/384 (13 - 8 g + 16 g^2), (-1073 + 500 g - 240 g^2)/(
13440 Sqrt[\[Pi]]), (
103 - 39 g + 12 g^2 - 16 g^3)/1536, (-375733 + 120176 g -
28000 g^2 + 8960 g^3)/(1935360 Sqrt[\[Pi]]), (
23797 - 6592 g + 1248 g^2 - 256 g^3 +
256 g^4)/122880, (-24650571822575 + 14183445823488 g -
2268246048768 g^2 + 352321536000 g^3 - 84557168640 g^4)/(
89292370083840 Sqrt[\[Pi]]), (-165590879286011 - 511036683714560 g +
70781061038080 g^2 - 8933531975680 g^3 + 1374389534720 g^4 -
1099511627776 g^5)/3166593487994880, (
760044411225953 + 17354002563092800 g - 4992572929867776 g^2 +
532281739444224 g^3 - 62008590336000 g^4 + 11905649344512 g^5)/(
74291251909754880 Sqrt[\[Pi]]), \
(1/2837267765243412480)(-8732708285675473 + 127173795291656448 g +
196238086546391040 g^2 - 18119951625748480 g^3 +
1715238139330560 g^4 - 211106232532992 g^5 + 140737488355328 g^6)}*)