Hi, everyone
I have an very tedious optimization problem. I can find the global optimal solution if all the exogenous variables are assigned, just as follows:
Clear["`*"];
L = 1; H = 3; B = 2; \[Alpha] = 1/10;
\[Eta]1a = \[Alpha]*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)) + (1 - \[Alpha])*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - \((p1 - L)\)\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]2a = \[Alpha]*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[
\*FractionBox[\(p2\), \(H\)], 1], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)) + (1 - \[Alpha])*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[
\*FractionBox[\(p2\), \(L\)], 1], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]3a = \[Alpha]*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[Max[
\*FractionBox[\(H*\[Eta]2a - p1*\[Eta]2a + p2\), \(H\)], 1], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)) + (1 - \[Alpha])*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[Max[
\*FractionBox[\(L*\[Eta]2a - p1*\[Eta]2a + p2\), \(L\)], 1], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]1b = \[Alpha]*(\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)) + (1 - \[Alpha])*(\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - L)\)\), \(L\)], \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\)) + (\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]2b = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[
\*FractionBox[\(p2\), \(H\)], 1]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[
\*FractionBox[\(p2\), \(L\)], 1]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + (\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]3b = \[Alpha]*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[Max[
\*FractionBox[\(H*\[Eta]2b - p1*\[Eta]2b + p2\), \(H\)], 1], g]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)) + (1 - \[Alpha])*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[Max[
\*FractionBox[\(L*\[Eta]2b - p1*\[Eta]2b + p2\), \(L\)], 1], g]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]11c = \[Eta]21c = \
\[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]11c = \[Mu]21c = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1c = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], 1], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[
\*FractionBox[\(p2\), \(L\)], 1], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1c = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]01d = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[
\*FractionBox[\(p2\), \(H\)], 1], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Eta]11d = \[Eta]21d = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Mu]11d = \[Mu]21d = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); y1d = \[Mu]11d + \[Eta]11d; \
\[Eta]1d = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - y1d*\((p1 - H)\)\), \(H\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1d = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - y1d*\((p1 - H)\)\), \(H\)], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1f = \[Eta]21f = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[1,
\*FractionBox[\(p2\), \(H\)]], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[1,
\*FractionBox[\(p2\), \(L\)]], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]11h = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[1,
\*FractionBox[\(p2\), \(H\)]], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[1,
\*FractionBox[\(p2\), \(L\)]], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]21h = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]21h = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); y2h = \[Eta]21h + \[Mu]21h; \[Mu]1h \
= \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[Max[
\*FractionBox[\(\((H - p1)\)*\[Eta]11h + p2*y2h\), \(H*y2h\)], 1],
B]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1h = \[Alpha]*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[Max[
\*FractionBox[\(\((H - p1)\)*\[Eta]11h + p2*y2h\), \(H*y2h\)], 1],
B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)) + (1 - \[Alpha])*(\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], B]\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\)); \[Eta]11j = \[Eta]21j = \
\[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]11j = \[Mu]21j = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1j = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1j = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1k = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - y1k*\((p1 - H)\)\), \(H\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Eta]01k = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[
\*FractionBox[\(p2\), \(H\)], 1]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); y1k = \[Mu]11k + \[Eta]11k;
\[Eta]11k = \[Eta]21k = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]11k = \[Mu]21k = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1k = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - y1k*\((p1 - H)\)\), \(H\)], g]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1m = \[Eta]21m = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[1,
\*FractionBox[\(p2\), \(H\)]]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]11O = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[1,
\*FractionBox[\(p2\), \(H\)]]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Eta]21O = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Mu]21O = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); y2O = \[Eta]21O + \[Mu]21O; \
\[Eta]1O = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[
\*FractionBox[\(\((H - p1)\)*\[Eta]11O + p2*y2O\), \(H*y2O\)],
1]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1O = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Max[
\*FractionBox[\(\((H - p1)\)*\[Eta]11O + p2*y2O\), \(H*y2O\)], 1]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]11P = \[Eta]21P = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]11P = \[Mu]21P = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1P = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2\), \(L\)], \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1P = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1q = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2 - y1q*\((p1 - H)\)\), \(H\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2\), \(L\)], \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Eta]01q = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[
\*FractionBox[\(p2\), \(H\)], 1]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); y1q = \[Mu]11q + \[Eta]11q;
\[Eta]11q = \[Eta]21q = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]11q = \[Mu]21q = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1q = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Min[
\*FractionBox[\(p2 - y1q*\((p1 - H)\)\), \(H\)], g]\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]1r = \[Eta]21r = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[1,
\*FractionBox[\(p2\), \(H\)]]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2\), \(L\)], \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Eta]11s = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[1,
\*FractionBox[\(p2\), \(H\)]]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Eta]21s = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)], \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
\[Mu]21s = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\),
FractionBox[\(p2 - \((p1 - H)\)\), \(H\)]]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); y2s = \[Eta]21s + \[Mu]21s; \
\[Eta]1s = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Max[
\*FractionBox[\(\((H - p1)\)*\[Eta]11s + p2*y2s\), \(H*y2s\)],
1]\), \(g\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\) + (1 - \[Alpha])*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(Min[
\*FractionBox[\(p2\), \(L\)], g]\), \(g\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\) + \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(g\), \(B\)]\(
\*FractionBox[\(1\), \(B -
1\)] \[DifferentialD]x\)\); \[Mu]1s = \[Alpha]*\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(1\), \(Max[
\*FractionBox[\(\((H - p1)\)*\[Eta]11s + p2*y2s\), \(H*y2s\)], 1]\)]\(
\*FractionBox[\(1\), \(B - 1\)] \[DifferentialD]x\)\);
k72 = Maximize[{(p1 + p2)*\[Mu]1s*\[Eta]11s +
2*p2*\[Eta]1s*\[Eta]21s + (p2 + p1)*\[Eta]1s*\[Mu]21s,
H > L > 0 && 1 < g <= B && H >= p1 >= L && p2/g <= L &&
g*p1 >= p2 >= p1}, {p1, p2, g}];
k62 = Maximize[{2*p2*\[Eta]1r*\[Eta]21r,
H > L > 0 && B >= g > 1 && L <= p2 <= g*L}, {p2, g}];
k52 = Maximize[{2*
p1*\[Mu]1q*\[Mu]11q + (p1 + p2)*\[Eta]1q*\[Mu]21q + (p1 +
p2)*\[Mu]1q*\[Eta]11q + 2*p2*\[Eta]1q*\[Eta]21q +
p2*\[Eta]1q*(1 - \[Mu]21q - \[Eta]21q) +
p2*(1 - \[Mu]1q - \[Eta]1q)*\[Eta]01q,
H > L > 0 && 1 < g <= B && p1 <= p2 && 2*p1 <= p2 <= g*p1 <= g*H &&
H >= p1 >= L && p2/g <= L}, {p1, p2, g}];
k42 = Maximize[{2*
p1*\[Mu]1P*\[Mu]11P + (p1 + p2)*\[Eta]1P*\[Mu]21P + (p1 +
p2)*\[Mu]1P*\[Eta]11P + 2*p2*\[Eta]1P*\[Eta]21P,
H > L > 0 && 1 < g <= B && p1 <= p2 <= 2*p1 && H >= p1 >= L &&
p2/g <= L}, {p1, p2, g}];
k7 = Maximize[{(p1 + p2)*\[Mu]1O*\[Eta]11O +
2*p2*\[Eta]1O*\[Eta]21O + (p2 + p1)*\[Eta]1O*\[Mu]21O,
H > L > 0 && 1 < g <= B && H >= p1 >= L && L <= p2/g <= H &&
g*p1 >= p2 >= p1}, {p1, p2, g}];
k6 = Maximize[{2*p2*\[Eta]1m*\[Eta]21m,
H > L > 0 && B >= g > 1 && L <= p2/g <= H}, {p2, g}];
k5 = Maximize[{2*
p1*\[Mu]1k*\[Mu]11k + (p1 + p2)*\[Eta]1k*\[Mu]21k + (p1 +
p2)*\[Mu]1k*\[Eta]11k + 2*p2*\[Eta]1k*\[Eta]21k +
p2*\[Eta]1k*(1 - \[Mu]21k - \[Eta]21k) +
p2*(1 - \[Mu]1k - \[Eta]1k)*\[Eta]01k,
H > L > 0 && 1 < g <= B && p1 <= p2 && 2*p1 <= p2 <= g*p1 <= g*H &&
H >= p1 >= L && L <= p2/g <= H}, {p1, p2, g}];
k4 = Maximize[{2*
p1*\[Mu]1j*\[Mu]11j + (p1 + p2)*\[Eta]1j*\[Mu]21j + (p1 +
p2)*\[Mu]1j*\[Eta]11j + 2*p2*\[Eta]1j*\[Eta]21j,
H > L > 0 && 1 < g <= B && p1 <= p2 <= 2*p1 && H >= p1 >= L &&
L <= p2/g <= H}, {p1, p2, g}];
y7 = Maximize[{(p1 + p2)*\[Mu]1h*\[Eta]11h +
2*p2*\[Eta]1h*\[Eta]21h + (p2 + p1)*\[Eta]1h*\[Mu]21h,
H > L > 0 && g >= B > 1 && p1 <= p2 < g*p1 <= g*H &&
L <= p1 <= H && p2 <= B*H}, {p1, p2, g}];
y6 = Maximize[{2*p2*\[Eta]1f*\[Eta]21f,
H > L > 0 && g >= B > 1 && L <= p2 <= B*H}, {p2, g}];
y5 = Maximize[{2*
p1*\[Mu]1d*\[Mu]11d + (p1 + p2)*\[Eta]1d*\[Mu]21d + (p1 +
p2)*\[Mu]1d*\[Eta]11d + 2*p2*\[Eta]1d*\[Eta]21d +
p2*\[Eta]1d*(1 - \[Mu]21d - \[Eta]21d) +
p2*(1 - \[Mu]1d - \[Eta]1d)*\[Eta]01d,
H > L > 0 && g >= B > 1 && p1 <= p2 && 2*p1 <= p2 <= g*p1 <= g*H &&
H >= p1 >= L}, {p1, p2, g}];
y4 = Maximize[{2*
p1*\[Mu]1c*\[Mu]11c + (p1 + p2)*\[Eta]1c*\[Mu]21c + (p1 +
p2)*\[Mu]1c*\[Eta]11c + 2*p2*\[Eta]1c*\[Eta]21c,
H > L > 0 && g >= B > 1 && p1 <= p2 <= 2*p1 && H >= p1 >= L}, {p1,
p2, g}];
k1 = Maximize[{2*p1*(1 - \[Eta]1b)^2 +
2*(p1 + p2)*\[Eta]1b*(1 - \[Eta]1b) + 2*p2*(\[Eta]1b)^2,
H > L > 0 && 1 < g <= B && 0 < p1 <= L && g*p1 >= p2 >= p1}, {p1,
p2, g}];
k2 = Maximize[{2*p2*(\[Eta]2b)^2,
H > L > 0 && 1 < g <= B && 0 < p2 <= B*H && p2 <= g*L}, {p2, g}];
k3 = Maximize[{(p1 + p2)*\[Eta]3b*\[Eta]2b +
2*p2*(1 - \[Eta]3b)*\[Eta]1b + (p2 +
p1)*(1 - \[Eta]3b)*(1 - \[Eta]1b),
H > L > 0 && 1 < g <= B && 0 < p1 <= L && g*p1 >= p2 >= p1}, {p1,
p2, g}];
y1 = Maximize[{2*p1*(1 - \[Eta]1a)^2 +
2*(p1 + p2)*\[Eta]1a*(1 - \[Eta]1a) + 2*p2*(\[Eta]1a)^2,
H > L > 0 && g >= B > 1 && 0 < p1 <= L && g*p1 >= p2 >= p1}, {p1,
p2, g}];
y2 = Maximize[{2*p2*(\[Eta]2a)^2,
H > L > 0 && g >= B > 1 && 0 < p2 <= B*H && p2 <= g*L}, {p2, g}];
y3 = Maximize[{(p1 + p2)*\[Eta]3a*\[Eta]2a +
2*p2*(1 - \[Eta]3a)*\[Eta]1a + (p2 +
p1)*(1 - \[Eta]3a)*(1 - \[Eta]1a),
H > L > 0 && g >= B > 1 && 0 < p1 <= L && g*p1 >= p2 >= p1}, {p1,
p2, g}];
Y1 = N[y1];
Print["y1=", Y1]
Y2 = N[y2];
Print["y2=", Y2]
Y3 = N[y3];
Print["y3=", Y3]
Y4 = N[k1];
Print["k1=", Y4]
Y5 = N[k2];
Print["k2=", Y5]
Y6 = N[k3];
Print["k3=", Y6]
Y7 = N[y4];
Print["y4=", Y7]
Y8 = N[y5];
Print["y5=", Y8]
Y9 = N[y6];
Print["y6=", Y9]
Y10 = N[y7];
Print["y7=", Y10]
Y11 = N[k4];
Print["k4=", Y11]
Y12 = N[k5];
Print["k5=", Y12]
Y13 = N[k6];
Print["k6=", Y13]
Y14 = N[k7];
Print["k7=", Y14]
Y15 = N[k42];
Print["k42=", Y15]
Y16 = N[k52];
Print["k52=", Y16]
Y17 = N[k62];
Print["k62=", Y17]
Y18 = N[k72];
Print["k72=", Y18]
Q = N[{y1, y2, y3, k1, k2, k3, y4, y5, y6, y7, k4, k5, k6, k7, k42,
k52, k62, k72}]
Print["Ymax=", MaximalBy[Q, First]]
My question is how to change above to derive the result if B (B changes from 2 to 10) or alpha (alpha changes from 0.1~0.95) changes and draw a line between B (or alpha) and Ymax (and p1, p2, g)? Could you please tell me how to use loop to realize it. Thank you very much!