# Plot the following expression according to the given constants?

Posted 8 months ago
981 Views
|
3 Replies
|
1 Total Likes
|
 I am trying to plot the following expression according to the given constants below; I got the plot. What I would like to see is something like fluctuated exponential decay; unfortunately, I couldn't be able to obtain. Could you please tell me if I missed something during or I suppose to introduce other techniques for plotting. s = (m + 0.5)*(2*0.74)/(3*10^8); R = 0.99981; T = 1.9*10^-4; L = 0.74; c = 3*10^8; tp = 50*10^-6; td = 450*10^-6; a = 0.00126; Tau = 50*10^-9; v = 30000; vc = (3*10^8)/(2*0.74); Plot[Sum[T^2 R^(2 m)* (UnitStep[tp - t + s]*a + UnitStep[t - s - tp] UnitStep[td - t + s] (1 - (1 - a) Exp[-((t - s - tp)/(2Tau))]) + UnitStep[ t - s - td] (a + (1 - a) Exp[-((t - s - td)/(2Tau))])) Abs[Exp[2 Pi*I*([v+ vc)*(t - s) + I*UnitStep[t - s - tp] UnitStep[td - t + s]*Pi]], {m, 0, 5000}], {t, 0, 0.0008}, PlotRange -> Answer
3 Replies
Sort By:
Posted 8 months ago Answer
 Dear Gianluca Gorni, Thank you very much for your comments. Yes, you are right I found one issue , I forgot to close the square bracket, and corrected and type the equation as follows. s = (m + 0.5)*(2*0.74)/(3*10^8); R = 0.99981; T = 1.9*10^-4; L = 0.74; c = 3*10^8; tp = 50*10^-6; td = 450*10^-6; a = 0.00126; Tau = 50*10^-9; v = 30000; vc = 3*10^8/2*0.74; Plot[Sum[T^2 R^(2 m)* (UnitStep[tp - t + s]*a + UnitStep[t - s - tp] UnitStep[td - t + s] (1 - (1 - a) Exp[-((t - s - tp)/(2Tau))]) + UnitStep[ t - s - td] (a + (1 - a) Exp[-((t - s - td)/(2Tau))])) Abs[Exp[2 Pi*I*([v+ vc)*(t - s) + I*UnitStep[t - s - tp] UnitStep[td - t + s]*Pi]], {m, 0, 5000}], {t, 0, 0.0008}] Answer
 Try s=(m+0.5)20.74/(3*10^8); R=0.99981; T=1.9*10^-4; L=0.74; c=3*10^8; tp=50*10^-6; td=450*10^-6; a=0.00126; Tau=50*10^-9; v=30000; vc=3*10^8/20.74; Plot[Sum[T^2 R^(2 m)*(UnitStep[tp-t+s]a+UnitStep[t-s- tp] UnitStep[td-t+s](1-(1-a)* Exp[-(t-s-tp)/(2 Tau)])+UnitStep[t-s-td](a+(1-a)Exp[-(t-s-td)/(2Tau)]))*Abs[Exp[2 Pi* I(v+vc)(t-s)+I*UnitStep[t-s-tp]UnitStep[td-t+s]Pi]], {m,0,5000}], {t,0,0.0008}] Answer