WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Premier Service
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Biological Sciences
Data Science
Medical Sciences
Graphics and Visualization
Import and Export
Wolfram Language
Geographic Information System
Know-How
4
Gabriel Lemieux
[NB] Mapping "Live" COVID Data on a Globe
Gabriel Lemieux
Posted
11 months ago
1960 Views
|
1 Reply
|
5 Total Likes
Follow this post
|
MODERATOR NOTE: coronavirus resources & updates:
https://wolfr.am/coronavirus
This document uses the data about the COVID-19 provided by the Johns Hopkins CSSE Github. But any data could be used!
Auto Update your Data
If you have Github installed on your system, you can use the following command to update an initialized copy of the ... university Github repertory (https://github.com/CSSEGISandData/COVID-19).
S
e
t
D
i
r
e
c
t
o
r
y
[
"
p
a
t
h
"
]
;
R
u
n
P
r
o
c
e
s
s
[
{
"
g
i
t
"
,
"
p
u
l
l
"
}
,
"
S
t
a
n
d
a
r
d
O
u
t
p
u
t
"
]
A
l
r
e
a
d
y
u
p
t
o
d
a
t
e
.
O
u
t
[
]
=
Getting The Map (Without the use of Database)
The following commands allow you to prepare a basic map (cylindric projection) using GEOJSON data files that contain a polygon for each country. The one used here is available on the here: https://cdn.eintel.net/Downloads/coast.geojson . I forgot the original source, I think it was this one: https://datahub.io/core/geo-countries#resource-countries
c
o
u
n
t
r
y
P
o
l
y
=
I
m
p
o
r
t
[
"
p
a
t
h
"
,
"
J
S
O
N
"
]
;
c
o
u
n
t
r
y
P
o
l
y
D
s
=
(
A
s
s
o
c
i
a
t
i
o
n
[
F
l
a
t
t
e
n
[
{
"
p
r
o
p
e
r
t
i
e
s
"
/
.
#
,
"
g
e
o
m
e
t
r
y
"
/
.
#
}
]
]
&
/
@
V
a
l
u
e
s
[
c
o
u
n
t
r
y
P
o
l
y
[
[
2
]
]
]
)
/
/
D
a
t
a
s
e
t
;
So the database look like that:
c
o
u
n
t
r
y
P
o
l
y
D
s
/
/
T
a
k
e
[
#
,
3
]
&
O
u
t
[
]
=
And all the available countries are named has such:
c
o
u
n
t
r
i
e
s
A
v
a
i
l
a
b
l
e
=
c
o
u
n
t
r
y
P
o
l
y
D
s
[
;
;
,
"
A
D
M
I
N
"
]
/
/
N
o
r
m
a
l
;
M
u
l
t
i
c
o
l
u
m
n
[
c
o
u
n
t
r
i
e
s
A
v
a
i
l
a
b
l
e
,
4
]
A
r
u
b
a
D
e
n
m
a
r
k
L
a
o
s
R
w
a
n
d
a
A
f
g
h
a
n
i
s
t
a
n
D
o
m
i
n
i
c
a
n
R
e
p
u
b
l
i
c
L
e
b
a
n
o
n
W
e
s
t
e
r
n
S
a
h
a
r
a
A
n
g
o
l
a
A
l
g
e
r
i
a
L
i
b
e
r
i
a
S
a
u
d
i
A
r
a
b
i
a
A
n
g
u
i
l
l
a
E
c
u
a
d
o
r
L
i
b
y
a
S
c
a
r
b
o
r
o
u
g
h
R
e
e
f
A
l
b
a
n
i
a
E
g
y
p
t
S
a
i
n
t
L
u
c
i
a
S
u
d
a
n
A
l
a
n
d
E
r
i
t
r
e
a
L
i
e
c
h
t
e
n
s
t
e
i
n
S
o
u
t
h
S
u
d
a
n
A
n
d
o
r
r
a
D
h
e
k
e
l
i
a
S
o
v
e
r
e
i
g
n
B
a
s
e
A
r
e
a
S
r
i
L
a
n
k
a
S
e
n
e
g
a
l
U
n
i
t
e
d
A
r
a
b
E
m
i
r
a
t
e
s
S
p
a
i
n
L
e
s
o
t
h
o
S
e
r
r
a
n
i
l
l
a
B
a
n
k
A
r
g
e
n
t
i
n
a
E
s
t
o
n
i
a
L
i
t
h
u
a
n
i
a
S
i
n
g
a
p
o
r
e
A
r
m
e
n
i
a
E
t
h
i
o
p
i
a
L
u
x
e
m
b
o
u
r
g
S
o
u
t
h
G
e
o
r
g
i
a
a
n
d
S
o
u
t
h
S
a
n
d
w
i
c
h
I
s
l
a
n
d
s
A
m
e
r
i
c
a
n
S
a
m
o
a
F
i
n
l
a
n
d
L
a
t
v
i
a
S
a
i
n
t
H
e
l
e
n
a
A
n
t
a
r
c
t
i
c
a
F
i
j
i
M
a
c
a
o
S
.
A
.
R
S
o
l
o
m
o
n
I
s
l
a
n
d
s
A
s
h
m
o
r
e
a
n
d
C
a
r
t
i
e
r
I
s
l
a
n
d
s
F
a
l
k
l
a
n
d
I
s
l
a
n
d
s
S
a
i
n
t
M
a
r
t
i
n
S
i
e
r
r
a
L
e
o
n
e
F
r
e
n
c
h
S
o
u
t
h
e
r
n
a
n
d
A
n
t
a
r
c
t
i
c
L
a
n
d
s
F
r
a
n
c
e
M
o
r
o
c
c
o
E
l
S
a
l
v
a
d
o
r
A
n
t
i
g
u
a
a
n
d
B
a
r
b
u
d
a
F
a
r
o
e
I
s
l
a
n
d
s
M
o
n
a
c
o
S
a
n
M
a
r
i
n
o
A
u
s
t
r
a
l
i
a
F
e
d
e
r
a
t
e
d
S
t
a
t
e
s
o
f
M
i
c
r
o
n
e
s
i
a
M
o
l
d
o
v
a
S
o
m
a
l
i
l
a
n
d
A
u
s
t
r
i
a
G
a
b
o
n
M
a
d
a
g
a
s
c
a
r
S
o
m
a
l
i
a
A
z
e
r
b
a
i
j
a
n
U
n
i
t
e
d
K
i
n
g
d
o
m
M
a
l
d
i
v
e
s
S
a
i
n
t
P
i
e
r
r
e
a
n
d
M
i
q
u
e
l
o
n
B
u
r
u
n
d
i
G
e
o
r
g
i
a
M
e
x
i
c
o
R
e
p
u
b
l
i
c
o
f
S
e
r
b
i
a
B
e
l
g
i
u
m
G
u
e
r
n
s
e
y
M
a
r
s
h
a
l
l
I
s
l
a
n
d
s
S
a
o
T
o
m
e
a
n
d
P
r
i
n
c
i
p
e
B
e
n
i
n
G
h
a
n
a
M
a
c
e
d
o
n
i
a
S
u
r
i
n
a
m
e
B
u
r
k
i
n
a
F
a
s
o
G
i
b
r
a
l
t
a
r
M
a
l
i
S
l
o
v
a
k
i
a
B
a
n
g
l
a
d
e
s
h
G
u
i
n
e
a
M
a
l
t
a
S
l
o
v
e
n
i
a
B
u
l
g
a
r
i
a
G
a
m
b
i
a
M
y
a
n
m
a
r
S
w
e
d
e
n
B
a
h
r
a
i
n
G
u
i
n
e
a
B
i
s
s
a
u
M
o
n
t
e
n
e
g
r
o
S
w
a
z
i
l
a
n
d
T
h
e
B
a
h
a
m
a
s
E
q
u
a
t
o
r
i
a
l
G
u
i
n
e
a
M
o
n
g
o
l
i
a
S
i
n
t
M
a
a
r
t
e
n
B
o
s
n
i
a
a
n
d
H
e
r
z
e
g
o
v
i
n
a
G
r
e
e
c
e
N
o
r
t
h
e
r
n
M
a
r
i
a
n
a
I
s
l
a
n
d
s
S
e
y
c
h
e
l
l
e
s
B
a
j
o
N
u
e
v
o
B
a
n
k
(
P
e
t
r
e
l
I
s
.
)
G
r
e
n
a
d
a
M
o
z
a
m
b
i
q
u
e
S
y
r
i
a
S
a
i
n
t
B
a
r
t
h
e
l
e
m
y
G
r
e
e
n
l
a
n
d
M
a
u
r
i
t
a
n
i
a
T
u
r
k
s
a
n
d
C
a
i
c
o
s
I
s
l
a
n
d
s
B
e
l
a
r
u
s
G
u
a
t
e
m
a
l
a
M
o
n
t
s
e
r
r
a
t
C
h
a
d
B
e
l
i
z
e
G
u
a
m
M
a
u
r
i
t
i
u
s
T
o
g
o
B
e
r
m
u
d
a
G
u
y
a
n
a
M
a
l
a
w
i
T
h
a
i
l
a
n
d
B
o
l
i
v
i
a
H
o
n
g
K
o
n
g
S
.
A
.
R
.
M
a
l
a
y
s
i
a
T
a
j
i
k
i
s
t
a
n
B
r
a
z
i
l
H
e
a
r
d
I
s
l
a
n
d
a
n
d
M
c
D
o
n
a
l
d
I
s
l
a
n
d
s
N
a
m
i
b
i
a
T
u
r
k
m
e
n
i
s
t
a
n
B
a
r
b
a
d
o
s
H
o
n
d
u
r
a
s
N
e
w
C
a
l
e
d
o
n
i
a
E
a
s
t
T
i
m
o
r
B
r
u
n
e
i
C
r
o
a
t
i
a
N
i
g
e
r
T
o
n
g
a
B
h
u
t
a
n
H
a
i
t
i
N
o
r
f
o
l
k
I
s
l
a
n
d
T
r
i
n
i
d
a
d
a
n
d
T
o
b
a
g
o
B
o
t
s
w
a
n
a
H
u
n
g
a
r
y
N
i
g
e
r
i
a
T
u
n
i
s
i
a
C
e
n
t
r
a
l
A
f
r
i
c
a
n
R
e
p
u
b
l
i
c
I
n
d
o
n
e
s
i
a
N
i
c
a
r
a
g
u
a
T
u
r
k
e
y
C
a
n
a
d
a
I
s
l
e
o
f
M
a
n
N
i
u
e
T
u
v
a
l
u
S
w
i
t
z
e
r
l
a
n
d
I
n
d
i
a
N
e
t
h
e
r
l
a
n
d
s
T
a
i
w
a
n
C
h
i
l
e
I
n
d
i
a
n
O
c
e
a
n
T
e
r
r
i
t
o
r
i
e
s
N
o
r
w
a
y
U
n
i
t
e
d
R
e
p
u
b
l
i
c
o
f
T
a
n
z
a
n
i
a
C
h
i
n
a
B
r
i
t
i
s
h
I
n
d
i
a
n
O
c
e
a
n
T
e
r
r
i
t
o
r
y
N
e
p
a
l
U
g
a
n
d
a
I
v
o
r
y
C
o
a
s
t
I
r
e
l
a
n
d
N
a
u
r
u
U
k
r
a
i
n
e
C
l
i
p
p
e
r
t
o
n
I
s
l
a
n
d
I
r
a
n
N
e
w
Z
e
a
l
a
n
d
U
n
i
t
e
d
S
t
a
t
e
s
M
i
n
o
r
O
u
t
l
y
i
n
g
I
s
l
a
n
d
s
C
a
m
e
r
o
o
n
I
r
a
q
O
m
a
n
U
r
u
g
u
a
y
C
y
p
r
u
s
N
o
M
a
n
s
A
r
e
a
I
c
e
l
a
n
d
P
a
k
i
s
t
a
n
U
n
i
t
e
d
S
t
a
t
e
s
o
f
A
m
e
r
i
c
a
D
e
m
o
c
r
a
t
i
c
R
e
p
u
b
l
i
c
o
f
t
h
e
C
o
n
g
o
I
s
r
a
e
l
P
a
n
a
m
a
U
S
N
a
v
a
l
B
a
s
e
G
u
a
n
t
a
n
a
m
o
B
a
y
R
e
p
u
b
l
i
c
o
f
C
o
n
g
o
I
t
a
l
y
P
i
t
c
a
i
r
n
I
s
l
a
n
d
s
U
z
b
e
k
i
s
t
a
n
C
o
o
k
I
s
l
a
n
d
s
J
a
m
a
i
c
a
P
e
r
u
V
a
t
i
c
a
n
C
o
l
o
m
b
i
a
J
e
r
s
e
y
S
p
r
a
t
l
y
I
s
l
a
n
d
s
S
a
i
n
t
V
i
n
c
e
n
t
a
n
d
t
h
e
G
r
e
n
a
d
i
n
e
s
C
o
m
o
r
o
s
J
o
r
d
a
n
P
h
i
l
i
p
p
i
n
e
s
V
e
n
e
z
u
e
l
a
C
a
p
e
V
e
r
d
e
J
a
p
a
n
P
a
l
a
u
B
r
i
t
i
s
h
V
i
r
g
i
n
I
s
l
a
n
d
s
C
o
s
t
a
R
i
c
a
B
a
y
k
o
n
u
r
C
o
s
m
o
d
r
o
m
e
P
a
p
u
a
N
e
w
G
u
i
n
e
a
U
n
i
t
e
d
S
t
a
t
e
s
V
i
r
g
i
n
I
s
l
a
n
d
s
C
o
r
a
l
S
e
a
I
s
l
a
n
d
s
S
i
a
c
h
e
n
G
l
a
c
i
e
r
P
o
l
a
n
d
V
i
e
t
n
a
m
C
u
b
a
K
a
z
a
k
h
s
t
a
n
P
u
e
r
t
o
R
i
c
o
V
a
n
u
a
t
u
C
u
r
a
ç
a
o
K
e
n
y
a
N
o
r
t
h
K
o
r
e
a
W
a
l
l
i
s
a
n
d
F
u
t
u
n
a
C
a
y
m
a
n
I
s
l
a
n
d
s
K
y
r
g
y
z
s
t
a
n
P
o
r
t
u
g
a
l
A
k
r
o
t
i
r
i
S
o
v
e
r
e
i
g
n
B
a
s
e
A
r
e
a
N
o
r
t
h
e
r
n
C
y
p
r
u
s
C
a
m
b
o
d
i
a
P
a
r
a
g
u
a
y
S
a
m
o
a
C
y
p
r
u
s
K
i
r
i
b
a
t
i
P
a
l
e
s
t
i
n
e
Y
e
m
e
n
C
z
e
c
h
R
e
p
u
b
l
i
c
S
a
i
n
t
K
i
t
t
s
a
n
d
N
e
v
i
s
F
r
e
n
c
h
P
o
l
y
n
e
s
i
a
S
o
u
t
h
A
f
r
i
c
a
G
e
r
m
a
n
y
S
o
u
t
h
K
o
r
e
a
Q
a
t
a
r
Z
a
m
b
i
a
D
j
i
b
o
u
t
i
K
o
s
o
v
o
R
o
m
a
n
i
a
Z
i
m
b
a
b
w
e
D
o
m
i
n
i
c
a
K
u
w
a
i
t
R
u
s
s
i
a
O
u
t
[
]
=
The following function gets the polygon data contained in the JSON and prepare Mathematica Polygon objects.
g
e
t
P
o
l
y
[
t
a
r
g
e
t
_
S
t
r
i
n
g
]
:
=
I
f
[
c
o
u
n
t
r
y
P
o
l
y
D
s
[
S
e
l
e
c
t
F
i
r
s
t
[
#
A
D
M
I
N
t
a
r
g
e
t
&
]
,
#
t
y
p
e
&
]
"
M
u
l
t
i
P
o
l
y
g
o
n
"
,
P
o
l
y
g
o
n
/
@
(
c
o
u
n
t
r
y
P
o
l
y
D
s
[
S
e
l
e
c
t
F
i
r
s
t
[
#
A
D
M
I
N
t
a
r
g
e
t
&
]
,
#
c
o
o
r
d
i
n
a
t
e
s
&
]
/
/
N
o
r
m
a
l
)
,
P
o
l
y
g
o
n
[
c
o
u
n
t
r
y
P
o
l
y
D
s
[
S
e
l
e
c
t
F
i
r
s
t
[
#
A
D
M
I
N
t
a
r
g
e
t
&
]
,
#
c
o
o
r
d
i
n
a
t
e
s
&
]
/
/
N
o
r
m
a
l
]
]
;
I
n
[
]
:
=
Now we can create a basemap:
b
a
s
e
m
a
p
=
{
E
d
g
e
F
o
r
m
[
{
T
h
i
n
,
B
l
a
c
k
}
]
,
F
a
c
e
F
o
r
m
[
W
h
i
t
e
]
}
~
J
o
i
n
~
J
o
i
n
[
(
g
e
t
P
o
l
y
/
@
c
o
u
n
t
r
i
e
s
A
v
a
i
l
a
b
l
e
)
]
;
b
a
s
e
m
a
p
/
/
G
r
a
p
h
i
c
s
[
#
,
B
a
c
k
g
r
o
u
n
d
-
>
L
i
g
h
t
B
l
u
e
,
I
m
a
g
e
S
i
z
e
L
a
r
g
e
]
&
/
/
R
a
s
t
e
r
i
z
e
O
u
t
[
]
=
Using ColorData we can add a bit of color on the basemap. I think you are guessing how we will put our data on the map!
{
E
d
g
e
F
o
r
m
[
{
T
h
i
n
,
B
l
a
c
k
}
]
}
~
J
o
i
n
~
J
o
i
n
[
R
i
f
f
l
e
[
g
e
t
P
o
l
y
/
@
c
o
u
n
t
r
i
e
s
A
v
a
i
l
a
b
l
e
,
F
a
c
e
F
o
r
m
[
{
#
}
]
&
/
@
C
o
l
o
r
D
a
t
a
[
3
5
,
"
C
o
l
o
r
L
i
s
t
"
]
]
]
/
/
G
r
a
p
h
i
c
s
[
#
,
B
a
c
k
g
r
o
u
n
d
-
>
L
i
g
h
t
B
l
u
e
,
I
m
a
g
e
S
i
z
e
L
a
r
g
e
]
&
/
/
R
a
s
t
e
r
i
z
e
O
u
t
[
]
=
Getting the data from the Github repertory
First we load the data from each file, then we will interpret them. We use the interpreter for the number, and we apply the DateObject function on the right columns. The DateObject function will return few errors because of the date formatting that was used in the first versions.
d
a
t
e
A
v
a
i
l
a
b
l
e
=
F
i
l
e
N
a
m
e
s
[
]
/
/
S
t
r
i
n
g
C
a
s
e
s
[
D
i
g
i
t
C
h
a
r
a
c
t
e
r
.
.
]
/
/
D
e
l
e
t
e
C
a
s
e
s
[
{
}
]
;
r
a
w
D
a
t
a
=
I
m
p
o
r
t
[
#
,
"
C
S
V
"
]
&
/
@
(
S
t
r
i
n
g
T
e
m
p
l
a
t
e
[
"
`
`
-
`
`
-
`
`
.
c
s
v
"
]
@
@
#
&
/
@
d
a
t
e
A
v
a
i
l
a
b
l
e
)
;
i
n
t
e
r
p
r
e
t
e
r
=
{
#
[
[
2
]
]
,
D
a
t
e
O
b
j
e
c
t
[
#
[
[
3
]
]
]
,
I
n
t
e
r
p
r
e
t
e
r
[
"
N
u
m
b
e
r
"
]
[
#
[
[
4
]
]
]
,
I
n
t
e
r
p
r
e
t
e
r
[
"
N
u
m
b
e
r
"
]
[
#
[
[
5
]
]
]
,
I
n
t
e
r
p
r
e
t
e
r
[
"
N
u
m
b
e
r
"
]
[
#
[
[
6
]
]
]
}
&
;
d
a
t
a
F
r
a
m
e
=
I
f
[
M
i
s
s
i
n
g
Q
[
#
]
,
0
,
#
]
&
/
/
@
P
a
r
a
l
l
e
l
M
a
p
[
i
n
t
e
r
p
r
e
t
e
r
,
F
l
a
t
t
e
n
[
R
e
s
t
/
@
r
a
w
D
a
t
a
,
1
]
]
;
Let’s take the data from yesterday, we suppose they are complete. We could use the data from today, but the Github might not have been updated.
d
a
t
a
F
r
a
m
e
=
D
e
l
e
t
e
C
a
s
e
s
[
d
a
t
a
F
r
a
m
e
,
F
a
i
l
u
r
e
Q
[
#
[
[
1
]
]
]
&
]
;
y
e
s
t
e
r
d
a
y
D
a
t
a
=
(
G
a
t
h
e
r
B
y
[
S
e
l
e
c
t
[
d
a
t
a
F
r
a
m
e
,
D
a
t
e
W
i
t
h
i
n
Q
[
Y
e
s
t
e
r
d
a
y
,
#
[
[
2
]
]
]
&
]
,
F
i
r
s
t
]
)
;
t
o
t
a
l
B
y
C
o
u
n
t
r
y
=
P
r
e
p
e
n
d
[
T
o
t
a
l
[
#
[
[
;
;
,
{
3
,
4
,
5
}
]
]
]
,
#
[
[
1
,
1
]
]
]
&
/
@
y
e
s
t
e
r
d
a
y
D
a
t
a
;
I
n
[
]
:
=
Some countries won’t be recognized because they are named differently. Here I correct some, but I’ll let few to show the differences.
t
o
t
a
l
B
y
C
o
u
n
t
r
y
=
t
o
t
a
l
B
y
C
o
u
n
t
r
y
/
.
{
"
U
S
"
"
U
n
i
t
e
d
S
t
a
t
e
s
o
f
A
m
e
r
i
c
a
"
,
"
K
o
r
e
a
,
S
o
u
t
h
"
-
>
"
S
o
u
t
h
K
o
r
e
a
"
,
"
T
a
i
w
a
n
*
"
"
T
a
i
w
a
n
"
}
;
G
r
i
d
[
{
#
[
[
1
]
]
,
#
[
[
2
]
]
,
#
[
[
3
]
]
,
#
[
[
4
]
]
}
&
/
@
t
o
t
a
l
B
y
C
o
u
n
t
r
y
]
C
h
i
n
a
7
1
9
8
8
3
1
6
9
6
0
7
8
3
I
t
a
l
y
3
5
7
1
3
2
9
7
8
4
0
2
5
I
r
a
n
1
7
3
6
1
1
1
3
5
5
3
8
9
S
p
a
i
n
1
3
9
1
0
6
2
3
1
0
8
1
G
e
r
m
a
n
y
1
2
3
2
7
2
8
1
0
5
F
r
a
n
c
e
9
0
4
6
1
4
8
1
2
S
o
u
t
h
K
o
r
e
a
8
4
1
3
8
4
1
5
4
0
S
w
i
t
z
e
r
l
a
n
d
3
0
2
8
2
8
1
5
U
n
i
t
e
d
K
i
n
g
d
o
m
2
6
3
5
7
1
6
7
U
n
i
t
e
d
S
t
a
t
e
s
o
f
A
m
e
r
i
c
a
7
4
4
7
1
1
5
1
0
6
N
e
t
h
e
r
l
a
n
d
s
2
0
5
3
5
8
2
A
u
s
t
r
i
a
1
6
4
6
4
9
N
o
r
w
a
y
1
5
5
0
6
1
B
e
l
g
i
u
m
1
4
8
6
1
4
3
1
S
w
e
d
e
n
1
2
7
9
1
0
1
D
e
n
m
a
r
k
1
1
1
5
4
1
J
a
p
a
n
8
8
9
2
9
1
4
4
M
a
l
a
y
s
i
a
7
9
0
2
6
0
C
r
u
i
s
e
S
h
i
p
7
1
2
7
3
2
5
C
z
e
c
h
i
a
4
6
4
0
3
Q
a
t
a
r
4
5
2
0
4
P
o
r
t
u
g
a
l
4
4
8
2
3
I
s
r
a
e
l
4
3
3
0
1
1
G
r
e
e
c
e
4
1
8
5
8
B
r
a
z
i
l
3
7
2
3
2
F
i
n
l
a
n
d
3
3
6
0
1
0
S
i
n
g
a
p
o
r
e
3
1
3
0
1
1
4
P
a
k
i
s
t
a
n
2
9
9
0
2
I
r
e
l
a
n
d
2
9
2
2
5
A
u
s
t
r
a
l
i
a
5
6
7
6
2
3
R
o
m
a
n
i
a
2
6
0
0
1
9
E
s
t
o
n
i
a
2
5
8
0
1
B
a
h
r
a
i
n
2
5
6
1
8
8
P
o
l
a
n
d
2
5
1
5
1
3
I
c
e
l
a
n
d
2
5
0
1
5
C
h
i
l
e
2
3
8
0
0
I
n
d
o
n
e
s
i
a
2
2
7
1
9
1
1
C
a
n
a
d
a
6
5
3
8
9
T
h
a
i
l
a
n
d
2
1
2
1
4
2
L
u
x
e
m
b
o
u
r
g
2
0
3
2
0
P
h
i
l
i
p
p
i
n
e
s
2
0
2
1
9
5
E
g
y
p
t
1
9
6
6
3
2
I
r
a
q
1
6
4
1
2
4
3
I
n
d
i
a
1
5
6
3
1
4
R
u
s
s
i
a
1
4
7
0
8
P
e
r
u
1
4
5
0
1
K
u
w
a
i
t
1
4
2
0
1
5
L
e
b
a
n
o
n
1
3
3
3
3
S
a
n
M
a
r
i
n
o
1
1
9
1
1
4
S
o
u
t
h
A
f
r
i
c
a
1
1
6
0
0
U
n
i
t
e
d
A
r
a
b
E
m
i
r
a
t
e
s
1
1
3
0
2
6
E
c
u
a
d
o
r
1
1
1
2
0
S
l
o
v
a
k
i
a
1
0
5
1
0
T
a
i
w
a
n
1
0
0
1
2
2
T
u
r
k
e
y
9
8
1
0
C
o
l
o
m
b
i
a
9
3
0
1
M
e
x
i
c
o
9
3
0
4
B
u
l
g
a
r
i
a
9
2
2
0
P
a
n
a
m
a
8
6
1
0
A
r
m
e
n
i
a
8
4
0
1
S
e
r
b
i
a
8
3
0
1
C
r
o
a
t
i
a
8
1
0
4
A
r
g
e
n
t
i
n
a
7
9
2
3
V
i
e
t
n
a
m
7
5
0
1
6
A
l
g
e
r
i
a
7
4
7
1
2
L
a
t
v
i
a
7
1
0
1
B
r
u
n
e
i
6
8
0
0
A
l
b
a
n
i
a
5
9
2
0
H
u
n
g
a
r
y
5
8
1
2
J
o
r
d
a
n
5
2
0
1
B
e
l
a
r
u
s
5
1
0
5
S
r
i
L
a
n
k
a
5
1
0
1
C
o
s
t
a
R
i
c
a
5
0
0
0
U
r
u
g
u
a
y
5
0
0
0
C
y
p
r
u
s
4
9
0
0
M
o
r
o
c
c
o
4
9
2
1
O
m
a
n
3
9
0
1
2
B
o
s
n
i
a
a
n
d
H
e
r
z
e
g
o
v
i
n
a
3
8
0
2
G
e
o
r
g
i
a
3
8
0
1
V
e
n
e
z
u
e
l
a
3
6
0
0
C
a
m
b
o
d
i
a
3
5
0
1
K
a
z
a
k
h
s
t
a
n
3
5
0
0
N
o
r
t
h
M
a
c
e
d
o
n
i
a
3
5
0
1
S
e
n
e
g
a
l
3
1
0
2
M
o
l
d
o
v
a
3
0
1
1
T
u
n
i
s
i
a
2
9
0
0
L
i
e
c
h
t
e
n
s
t
e
i
n
2
8
0
0
G
u
a
d
e
l
o
u
p
e
2
7
0
0
L
i
t
h
u
a
n
i
a
2
7
0
1
B
u
r
k
i
n
a
F
a
s
o
2
0
1
0
N
e
w
Z
e
a
l
a
n
d
2
0
0
0
M
a
r
t
i
n
i
q
u
e
1
9
1
0
U
z
b
e
k
i
s
t
a
n
1
5
0
0
B
a
n
g
l
a
d
e
s
h
1
4
1
3
J
a
m
a
i
c
a
1
3
0
2
B
o
l
i
v
i
a
1
2
0
0
R
e
u
n
i
o
n
1
2
0
0
P
a
r
a
g
u
a
y
1
1
0
0
H
o
n
d
u
r
a
s
9
0
0
N
i
g
e
r
i
a
8
0
1
R
w
a
n
d
a
8
0
0
C
u
b
a
7
1
0
T
r
i
n
i
d
a
d
a
n
d
T
o
b
a
g
o
7
0
0
C
o
t
e
d
'
I
v
o
i
r
e
6
0
1
E
t
h
i
o
p
i
a
6
0
0
M
o
n
g
o
l
i
a
6
0
0
A
r
u
b
a
4
0
0
C
o
n
g
o
(
K
i
n
s
h
a
s
a
)
4
0
0
E
q
u
a
t
o
r
i
a
l
G
u
i
n
e
a
4
0
0
K
y
r
g
y
z
s
t
a
n
3
0
0
M
a
u
r
i
t
i
u
s
3
0
0
M
a
y
o
t
t
e
3
0
0
T
a
n
z
a
n
i
a
3
0
0
B
a
r
b
a
d
o
s
2
0
0
B
e
n
i
n
2
0
0
L
i
b
e
r
i
a
2
0
0
S
u
d
a
n
2
1
0
Z
a
m
b
i
a
2
0
0
D
j
i
b
o
u
t
i
1
0
0
G
a
m
b
i
a
,
T
h
e
1
0
0
M
o
n
t
e
n
e
g
r
o
1
0
0
S
o
m
a
l
i
a
1
0
0
G
u
a
m
0
0
0
T
h
e
G
a
m
b
i
a
0
0
0
O
u
t
[
]
=
Preparing the 2D Map
The 2D map is the important one since it is more useful in many situations to work with two-dimensional representations. Still we will make a 3D globe in the next section!
Countries in the data:
s
e
l
e
c
t
e
d
=
S
e
l
e
c
t
[
M
e
m
b
e
r
Q
[
c
o
u
n
t
r
i
e
s
A
v
a
i
l
a
b
l
e
,
#
[
[
1
]
]
]
&
]
[
t
o
t
a
l
B
y
C
o
u
n
t
r
y
[
[
;
;
]
]
]
;
s
e
l
e
c
t
e
d
[
[
;
;
,
1
]
]
/
/
M
u
l
t
i
c
o
l
u
m
n
[
#
,
4
]
&
C
h
i
n
a
R
o
m
a
n
i
a
P
a
n
a
m
a
B
u
r
k
i
n
a
F
a
s
o
I
t
a
l
y
E
s
t
o
n
i
a
A
r
m
e
n
i
a
N
e
w
Z
e
a
l
a
n
d
I
r
a
n
B
a
h
r
a
i
n
C
r
o
a
t
i
a
U
z
b
e
k
i
s
t
a
n
S
p
a
i
n
P
o
l
a
n
d
A
r
g
e
n
t
i
n
a
B
a
n
g
l
a
d
e
s
h
G
e
r
m
a
n
y
I
c
e
l
a
n
d
V
i
e
t
n
a
m
J
a
m
a
i
c
a
F
r
a
n
c
e
C
h
i
l
e
A
l
g
e
r
i
a
B
o
l
i
v
i
a
S
o
u
t
h
K
o
r
e
a
I
n
d
o
n
e
s
i
a
L
a
t
v
i
a
P
a
r
a
g
u
a
y
S
w
i
t
z
e
r
l
a
n
d
C
a
n
a
d
a
B
r
u
n
e
i
H
o
n
d
u
r
a
s
U
n
i
t
e
d
K
i
n
g
d
o
m
T
h
a
i
l
a
n
d
A
l
b
a
n
i
a
N
i
g
e
r
i
a
U
n
i
t
e
d
S
t
a
t
e
s
o
f
A
m
e
r
i
c
a
L
u
x
e
m
b
o
u
r
g
H
u
n
g
a
r
y
R
w
a
n
d
a
N
e
t
h
e
r
l
a
n
d
s
P
h
i
l
i
p
p
i
n
e
s
J
o
r
d
a
n
C
u
b
a
A
u
s
t
r
i
a
E
g
y
p
t
B
e
l
a
r
u
s
T
r
i
n
i
d
a
d
a
n
d
T
o
b
a
g
o
N
o
r
w
a
y
I
r
a
q
S
r
i
L
a
n
k
a
E
t
h
i
o
p
i
a
B
e
l
g
i
u
m
I
n
d
i
a
C
o
s
t
a
R
i
c
a
M
o
n
g
o
l
i
a
S
w
e
d
e
n
R
u
s
s
i
a
U
r
u
g
u
a
y
A
r
u
b
a
D
e
n
m
a
r
k
P
e
r
u
C
y
p
r
u
s
E
q
u
a
t
o
r
i
a
l
G
u
i
n
e
a
J
a
p
a
n
K
u
w
a
i
t
M
o
r
o
c
c
o
K
y
r
g
y
z
s
t
a
n
M
a
l
a
y
s
i
a
L
e
b
a
n
o
n
O
m
a
n
M
a
u
r
i
t
i
u
s
Q
a
t
a
r
S
a
n
M
a
r
i
n
o
B
o
s
n
i
a
a
n
d
H
e
r
z
e
g
o
v
i
n
a
B
a
r
b
a
d
o
s
P
o
r
t
u
g
a
l
S
o
u
t
h
A
f
r
i
c
a
G
e
o
r
g
i
a
B
e
n
i
n
I
s
r
a
e
l
U
n
i
t
e
d
A
r
a
b
E
m
i
r
a
t
e
s
V
e
n
e
z
u
e
l
a
L
i
b
e
r
i
a
G
r
e
e
c
e
E
c
u
a
d
o
r
C
a
m
b
o
d
i
a
S
u
d
a
n
B
r
a
z
i
l
S
l
o
v
a
k
i
a
K
a
z
a
k
h
s
t
a
n
Z
a
m
b
i
a
F
i
n
l
a
n
d
T
a
i
w
a
n
S
e
n
e
g
a
l
D
j
i
b
o
u
t
i
S
i
n
g
a
p
o
r
e
T
u
r
k
e
y
M
o
l
d
o
v
a
M
o
n
t
e
n
e
g
r
o
P
a
k
i
s
t
a
n
C
o
l
o
m
b
i
a
T
u
n
i
s
i
a
S
o
m
a
l
i
a
I
r
e
l
a
n
d
M
e
x
i
c
o
L
i
e
c
h
t
e
n
s
t
e
i
n
G
u
a
m
A
u
s
t
r
a
l
i
a
B
u
l
g
a
r
i
a
L
i
t
h
u
a
n
i
a
O
u
t
[
]
=
Some countries were not recognized, I corrected some of them already in the previous section:
S
e
l
e
c
t
[
¬
M
e
m
b
e
r
Q
[
c
o
u
n
t
r
i
e
s
A
v
a
i
l
a
b
l
e
,
#
[
[
1
]
]
]
&
]
[
t
o
t
a
l
B
y
C
o
u
n
t
r
y
[
[
;
;
]
]
]
/
/
M
u
l
t
i
c
o
l
u
m
n
[
#
[
[
;
;
,
1
]
]
,
5
]
&
C
r
u
i
s
e
S
h
i
p
N
o
r
t
h
M
a
c
e
d
o
n
i
a
R
e
u
n
i
o
n
M
a
y
o
t
t
e
T
h
e
G
a
m
b
i
a
C
z
e
c
h
i
a
G
u
a
d
e
l
o
u
p
e
C
o
t
e
d
'
I
v
o
i
r
e
T
a
n
z
a
n
i
a
S
e
r
b
i
a
M
a
r
t
i
n
i
q
u
e
C
o
n
g
o
(
K
i
n
s
h
a
s
a
)
G
a
m
b
i
a
,
T
h
e
O
u
t
[
]
=
Now we are ready to colour our map!
c
s
=
C
o
l
o
r
D
a
t
a
[
{
"
T
e
m
p
e
r
a
t
u
r
e
M
a
p
"
,
{
0
,
L
o
g
[
1
0
0
0
0
0
]
}
}
]
;
c
v
m
a
p
=
(
b
a
s
e
m
a
p
~
J
o
i
n
~
J
o
i
n
[
{
F
a
c
e
F
o
r
m
[
c
s
[
I
f
[
#
[
[
2
]
]
≠
0
,
L
o
g
[
#
[
[
2
]
]
]
,
0
]
]
]
,
g
e
t
P
o
l
y
[
#
[
[
1
]
]
]
}
&
/
@
s
e
l
e
c
t
e
d
]
)
/
/
G
r
a
p
h
i
c
s
[
#
,
P
l
o
t
R
a
n
g
e
{
{
-
1
8
0
,
1
8
0
}
,
A
u
t
o
m
a
t
i
c
}
,
B
a
c
k
g
r
o
u
n
d
-
>
L
i
g
h
t
B
l
u
e
,
I
m
a
g
e
S
i
z
e
L
a
r
g
e
]
&
;
R
o
w
[
{
R
a
s
t
e
r
i
z
e
[
c
v
m
a
p
,
I
m
a
g
e
S
i
z
e
L
a
r
g
e
]
,
B
a
r
L
e
g
e
n
d
[
{
"
T
e
m
p
e
r
a
t
u
r
e
M
a
p
"
,
{
0
,
L
o
g
[
1
0
0
0
0
0
]
}
}
]
}
,
F
r
a
m
e
T
r
u
e
,
B
a
c
k
g
r
o
u
n
d
L
i
g
h
t
B
l
u
e
]
Globe representation
This step is easier than I was thinking. Using SphericalPlot, we can apply a Texture on the sphere with the right mapping. The Automatic TextureCoordinateFunction from SphericalPlot does the hard work for us! Note the rotation I did on the picture.
R
o
w
[
{
S
p
h
e
r
i
c
a
l
P
l
o
t
3
D
[
1
,
θ
,
ϕ
,
A
x
e
s
F
a
l
s
e
,
B
o
x
e
d
F
a
l
s
e
,
M
e
s
h
S
t
y
l
e
D
i
r
e
c
t
i
v
e
[
{
O
p
a
c
i
t
y
[
0
.
2
5
]
}
]
,
B
a
c
k
g
r
o
u
n
d
B
l
a
c
k
,
I
m
a
g
e
S
i
z
e
L
a
r
g
e
,
P
l
o
t
S
t
y
l
e
{
T
e
x
t
u
r
e
[
R
o
t
a
t
e
[
R
a
s
t
e
r
i
z
e
[
c
v
m
a
p