WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Finance Platform
System Modeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Application Server
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Biological Sciences
Data Science
Medical Sciences
Graphics and Visualization
Wolfram Language
Events & Media
11
Oscar Rodriguez
General and COVID-19 deaths in Sweden
Oscar Rodriguez, corporación universitaria iberoamericana
Posted
2 years ago
7512 Views
|
7 Replies
|
12 Total Likes
Follow this post
|
MODERATOR NOTE: coronavirus resources & updates:
https://wolfr.am/coronavirus
General and COVID-19 deaths in Sweden
Oscar Rodriguez, Corporación Universitaria Iberoamericana
In this notebook i am trying to uncover if the sar-cov-2 is having a major impact in deceases in Swedish. I am using the same database previously used by Jan Brugard (https://community.wolfram.com/groups/-/m/t/1974412).
Death by day
First, i would like to see how the deceased are distributed since 2015. I am excluding the day with zero deaths
d
e
a
t
h
B
y
D
a
y
=
I
m
p
o
r
t
[
F
i
l
e
N
a
m
e
J
o
i
n
[
{
N
o
t
e
b
o
o
k
D
i
r
e
c
t
o
r
y
[
]
,
"
2
0
2
0
-
0
5
-
0
8
-
-
-
p
r
e
l
i
m
i
n
a
r
-
s
t
a
t
i
s
t
i
k
-
o
v
e
r
-
d
o
d
a
-
i
n
k
l
-
e
n
g
.
x
l
s
x
"
}
]
,
{
"
X
L
S
X
"
,
"
D
a
t
a
"
,
2
}
]
;
(
*
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
p
e
r
d
a
y
f
o
r
2
0
1
5
-
2
0
2
0
1
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
*
)
T
a
b
l
e
F
o
r
m
[
d
e
a
t
h
B
y
D
a
y
,
T
a
b
l
e
H
e
a
d
i
n
g
s
A
u
t
o
m
a
t
i
c
]
;
o
f
2
0
1
5
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
2
]
]
,
0
.
`
]
;
(
*
s
e
b
o
r
r
a
n
l
o
s
r
e
g
i
s
t
r
o
s
c
o
n
c
e
r
o
,
y
a
q
u
e
e
l
i
n
t
e
r
e
s
s
o
n
e
l
c
o
n
t
e
o
d
e
l
o
s
f
a
l
l
e
c
i
d
o
s
*
)
o
f
2
0
1
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
3
]
]
,
0
.
`
]
;
o
f
2
0
1
7
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
4
]
]
,
0
.
`
]
;
o
f
2
0
1
8
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
5
]
]
,
0
.
`
]
;
o
f
2
0
1
9
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
6
]
]
,
0
.
`
]
;
o
f
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
7
]
]
,
0
.
`
]
;
o
f
A
v
e
r
a
g
e
=
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
,
8
]
]
;
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
o
f
2
0
1
5
,
o
f
2
0
1
6
,
o
f
2
0
1
7
,
o
f
2
0
1
8
,
o
f
2
0
1
9
,
o
f
2
0
2
0
,
o
f
A
v
e
r
a
g
e
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
C
h
a
r
t
L
a
b
e
l
s
{
"
2
0
1
5
"
,
"
2
0
1
6
"
,
"
2
0
1
7
"
,
"
2
0
1
8
"
,
"
2
0
1
9
"
,
"
2
0
2
0
"
,
"
A
v
e
r
a
g
e
"
}
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
p
e
r
d
a
y
f
o
r
2
0
1
5
-
2
0
2
0
1
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
,
B
a
s
e
S
t
y
l
e
1
4
,
I
m
a
g
e
S
i
z
e
8
0
0
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
,
F
r
a
m
e
L
a
b
e
l
{
"
Y
e
a
r
"
,
"
#
o
f
d
e
a
t
h
"
}
]
This graph shows the distribution of the death count from 2015 to 2020. In all cases, there is a very marked distribution of deaths, with some peaks in all years except 2020. This is because all the data is not available. in 2020, only until May 6. In 2020 there is a more dispersed trend.
Este gráfico muestra la distribución del conteo de muertes desde al año 2015 al 2020. En todos los casos se ve una distribución de las muertes muy marcado, con algunos picos en todos los años excepto en 2020. Esto debido a que no están todos los datos en 2020, solo hasta mayo 6. En 2020 se ve una tendencia más dispersa.
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
o
f
2
0
1
9
,
o
f
2
0
2
0
}
,
C
h
a
r
t
L
a
y
o
u
t
"
O
v
e
r
l
a
p
p
e
d
"
,
C
h
a
r
t
B
a
s
e
S
t
y
l
e
O
p
a
c
i
t
y
[
0
.
3
]
,
C
h
a
r
t
L
e
g
e
n
d
s
{
"
o
t
r
o
"
,
"
2
0
2
0
"
}
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
p
e
r
d
a
y
f
o
r
2
0
1
5
-
2
0
2
0
1
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
,
B
a
s
e
S
t
y
l
e
1
4
,
I
m
a
g
e
S
i
z
e
8
0
0
,
F
r
a
m
e
L
a
b
e
l
{
"
Y
e
a
r
"
,
"
#
o
f
d
e
a
t
h
"
}
]
Now, this is showing the whole year, except for 2020. So this is how it looks if we show the deceased until may 6 every year.
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
S
t
a
n
d
a
r
d
i
z
e
[
o
f
2
0
1
5
M
a
y
6
]
,
S
t
a
n
d
a
r
d
i
z
e
[
o
f
2
0
2
0
M
a
y
6
]
}
]
0
.
4
6
9
4
6
2
o
f
2
0
1
5
M
a
y
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
2
]
]
,
0
.
`
]
;
(
*
s
e
b
o
r
r
a
n
l
o
s
r
e
g
i
s
t
r
o
s
c
o
n
c
e
r
o
,
y
a
q
u
e
e
l
i
n
t
e
r
e
s
s
o
n
e
l
c
o
n
t
e
o
d
e
l
o
s
f
a
l
l
e
c
i
d
o
s
*
)
o
f
2
0
1
6
M
a
y
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
3
]
]
,
0
.
`
]
;
o
f
2
0
1
7
M
a
y
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
4
]
]
,
0
.
`
]
;
o
f
2
0
1
8
M
a
y
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
5
]
]
,
0
.
`
]
;
o
f
2
0
1
9
M
a
y
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
6
]
]
,
0
.
`
]
;
o
f
2
0
2
0
M
a
y
6
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
7
]
]
,
0
.
`
]
;
o
f
A
v
e
r
a
g
e
M
a
y
6
=
d
e
a
t
h
B
y
D
a
y
[
[
8
;
;
1
3
4
,
8
]
]
;
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
o
f
2
0
1
5
M
a
y
6
,
o
f
2
0
1
6
M
a
y
6
,
o
f
2
0
1
7
M
a
y
6
,
o
f
2
0
1
8
M
a
y
6
,
o
f
2
0
1
9
M
a
y
6
,
o
f
2
0
2
0
M
a
y
6
,
o
f
A
v
e
r
a
g
e
M
a
y
6
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
C
h
a
r
t
L
a
b
e
l
s
{
"
2
0
1
5
"
,
"
2
0
1
6
"
,
"
2
0
1
7
"
,
"
2
0
1
8
"
,
"
2
0
1
9
"
,
"
2
0
2
0
"
,
"
A
v
e
r
a
g
e
"
}
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
p
e
r
d
a
y
f
o
r
2
0
1
5
-
2
0
2
0
1
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
u
n
t
i
l
m
a
y
6
"
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
,
B
a
s
e
S
t
y
l
e
1
4
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
,
I
m
a
g
e
S
i
z
e
9
0
0
,
F
r
a
m
e
L
a
b
e
l
{
"
Y
e
a
r
"
,
"
#
o
f
d
e
a
t
h
"
}
]
This graph shows the distribution of deaths until May 6, in this case the peaks of deaths are not evident in all the years prior to 2020.
Esta gráfica muestra la distribución de las muertes hasta mayo 6, en este caso no se evidencian los picos de muertes en todos los años previos al 2020.
p
r
o
b
a
b
l
i
=
S
m
o
o
t
h
H
i
s
t
o
g
r
a
m
[
{
o
f
2
0
1
5
M
a
y
6
,
o
f
2
0
1
6
M
a
y
6
,
o
f
2
0
1
7
M
a
y
6
,
o
f
2
0
1
8
M
a
y
6
,
o
f
2
0
1
9
M
a
y
6
,
o
f
2
0
2
0
M
a
y
6
}
,
P
l
o
t
R
a
n
g
e
A
l
l
,
P
l
o
t
L
e
g
e
n
d
s
{
"
2
0
1
5
"
,
"
2
0
1
6
"
,
"
2
0
1
7
"
,
"
2
0
1
8
"
,
"
2
0
1
9
"
,
"
2
0
2
0
"
,
"
A
v
e
r
a
g
e
"
}
,
P
l
o
t
L
a
b
e
l
"
D
e
a
t
h
d
i
s
t
r
i
b
u
t
i
o
n
2
0
1
5
-
2
0
2
0
u
n
t
i
l
m
a
y
6
"
,
P
l
o
t
T
h
e
m
e
"
W
e
b
"
]
;
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
o
f
2
0
1
5
M
a
y
6
,
o
f
2
0
1
6
M
a
y
6
,
o
f
2
0
1
7
M
a
y
6
,
o
f
2
0
1
8
M
a
y
6
,
o
f
2
0
1
9
M
a
y
6
,
o
f
2
0
2
0
M
a
y
6
}
,
{
{
"
T
e
s
t
D
a
t
a
T
a
b
l
e
"
,
A
l
l
}
,
"
T
e
s
t
C
o
n
c
l
u
s
i
o
n
"
}
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
:
N
o
v
a
l
i
d
t
e
s
t
s
w
e
r
e
f
o
u
n
d
u
n
d
e
r
t
h
e
g
i
v
e
n
a
s
s
u
m
p
t
i
o
n
s
.
T
h
e
K
r
u
s
k
a
l
W
a
l
l
i
s
t
e
s
t
w
i
l
l
b
e
u
s
e
d
b
u
t
m
a
y
p
r
o
d
u
c
e
u
n
r
e
l
i
a
b
l
e
r
e
s
u
l
t
s
.
S
t
a
t
i
s
t
i
c
P
-
V
a
l
u
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
9
3
.
3
2
6
7
8
.
0
2
9
6
×
-
2
0
1
0
,
T
h
e
n
u
l
l
h
y
p
o
t
h
e
s
i
s
t
h
a
t
t
h
e
m
e
a
n
a
r
e
e
q
u
a
l
i
s
r
e
j
e
c
t
e
d
a
t
t
h
e
5
p
e
r
c
e
n
t
l
e
v
e
l
b
a
s
e
d
o
n
t
h
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
t
e
s
t
.
c
u
m
u
l
a
=
S
m
o
o
t
h
H
i
s
t
o
g
r
a
m
[
{
o
f
2
0
1
5
M
a
y
6
,
o
f
2
0
1
6
M
a
y
6
,
o
f
2
0
1
7
M
a
y
6
,
o
f
2
0
1
8
M
a
y
6
,
o
f
2
0
1
9
M
a
y
6
,
o
f
2
0
2
0
M
a
y
6
}
,
A
u
t
o
m
a
t
i
c
,
"
C
D
F
"
,
P
l
o
t
R
a
n
g
e
A
l
l
,
P
l
o
t
L
e
g
e
n
d
s
{
"
2
0
1
5
"
,
"
2
0
1
6
"
,
"
2
0
1
7
"
,
"
2
0
1
8
"
,
"
2
0
1
9
"
,
"
2
0
2
0
"
}
,
P
l
o
t
L
a
b
e
l
"
D
e
a
t
h
d
i
s
t
r
i
b
u
t
i
o
n
2
0
1
5
-
2
0
2
0
u
n
t
i
l
m
a
y
6
,
c
u
m
u
l
a
t
i
v
e
"
,
P
l
o
t
T
h
e
m
e
"
W
e
b
"
]
;
s
u
r
v
i
=
S
m
o
o
t
h
H
i
s
t
o
g
r
a
m
[
{
o
f
2
0
1
5
M
a
y
6
,
o
f
2
0
1
6
M
a
y
6
,
o
f
2
0
1
7
M
a
y
6
,
o
f
2
0
1
8
M
a
y
6
,
o
f
2
0
1
9
M
a
y
6
,
o
f
2
0
2
0
M
a
y
6
}
,
A
u
t
o
m
a
t
i
c
,
"
S
F
"
,
P
l
o
t
R
a
n
g
e
A
l
l
,
P
l
o
t
L
e
g
e
n
d
s
{
"
2
0
1
5
"
,
"
2
0
1
6
"
,
"
2
0
1
7
"
,
"
2
0
1
8
"
,
"
2
0
1
9
"
,
"
2
0
2
0
"
}
,
P
l
o
t
L
a
b
e
l
"
D
e
a
t
h
d
i
s
t
r
i
b
u
t
i
o
n
2
0
1
5
-
2
0
2
0
u
n
t
i
l
m
a
y
6
,
s
u
r
v
i
v
a
l
"
,
P
l
o
t
T
h
e
m
e
"
W
e
b
"
]
;
G
r
i
d
[
{
{
p
r
o
b
a
b
l
i
}
,
{
c
u
m
u
l
a
}
,
{
s
u
r
v
i
}
}
,
I
t
e
m
S
i
z
e
5
0
]
2
0
1
5
2
0
1
6
2
0
1
7
2
0
1
8
2
0
1
9
2
0
2
0
2
0
1
5
2
0
1
6
2
0
1
7
2
0
1
8
2
0
1
9
2
0
2
0
2
0
1
5
2
0
1
6
2
0
1
7
2
0
1
8
2
0
1
9
2
0
2
0
The distributions between the different years do not differ much. However, when generating an inferential statistical test, it was not possible to find a valid test.
Las distribuciones entre los diferentes años no difieren mucho. Sin embargo, al generar una prueba estadística inferencial, no fue posible encontrar un test válido.
I am going to try to use inferential statistics, in order to determine if the differences are significant
d
e
a
t
h
B
y
S
e
x
=
I
m
p
o
r
t
[
F
i
l
e
N
a
m
e
J
o
i
n
[
{
N
o
t
e
b
o
o
k
D
i
r
e
c
t
o
r
y
[
]
,
"
2
0
2
0
-
0
5
-
0
8
-
-
-
p
r
e
l
i
m
i
n
a
r
-
s
t
a
t
i
s
t
i
k
-
o
v
e
r
-
d
o
d
a
-
i
n
k
l
-
e
n
g
.
x
l
s
x
"
}
]
,
{
"
X
L
S
X
"
,
"
D
a
t
a
"
,
3
}
]
;
T
a
b
l
e
F
o
r
m
[
d
e
a
t
h
B
y
S
e
x
,
T
a
b
l
e
H
e
a
d
i
n
g
s
A
u
t
o
m
a
t
i
c
]
;
(
*
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
p
e
r
d
a
y
f
o
r
2
0
1
5
-
2
0
2
0
1
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
*
)
(
*
m
e
n
s
e
g
m
e
n
t
e
d
b
y
a
g
e
*
)
m
e
n
0
t
o
6
4
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
3
]
]
,
0
.
`
]
;
m
e
n
6
5
t
o
7
9
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
4
]
]
,
0
.
`
]
;
m
e
n
8
0
t
o
8
9
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
5
]
]
,
0
.
`
]
;
m
e
n
9
0
t
o
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
6
]
]
,
0
.
`
]
;
(
*
w
o
m
e
n
s
e
g
m
e
n
t
e
d
b
y
a
g
e
*
)
w
o
m
0
t
o
6
4
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
7
]
]
,
0
.
`
]
;
w
o
m
6
5
t
o
7
9
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
8
]
]
,
0
.
`
]
;
w
o
m
8
0
t
o
8
9
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
9
]
]
,
0
.
`
]
;
w
o
m
9
0
t
o
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
0
]
]
,
0
.
`
]
;
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
L
a
b
e
l
e
d
[
{
m
e
n
0
t
o
6
4
,
w
o
m
0
t
o
6
4
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
6
5
t
o
7
9
,
w
o
m
6
5
t
o
7
9
}
,
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
6
5
t
o
7
9
,
w
o
m
6
5
t
o
7
9
}
]
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
8
0
t
o
8
9
,
w
o
m
8
0
t
o
8
9
}
,
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
8
0
t
o
8
9
,
w
o
m
8
0
t
o
8
9
}
]
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
9
0
t
o
,
w
o
m
9
0
t
o
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
}
,
C
h
a
r
t
L
a
b
e
l
s
{
P
l
a
c
e
d
[
{
"
0
-
6
4
"
,
"
6
5
-
7
9
"
,
"
8
0
-
8
9
"
,
"
9
0
+
"
}
,
A
x
i
s
]
,
P
l
a
c
e
d
[
{
"
"
,
"
"
,
"
"
,
"
"
}
,
A
x
i
s
]
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
m
e
n
a
n
d
w
o
m
e
n
,
2
0
1
9
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
F
r
a
m
e
L
a
b
e
l
{
"
A
g
e
"
,
"
#
o
f
d
e
a
t
h
"
}
,
C
h
a
r
t
L
e
g
e
n
d
s
{
"
M
e
n
"
,
"
W
o
m
e
n
"
}
,
B
a
s
e
S
t
y
l
e
1
4
,
I
m
a
g
e
S
i
z
e
8
0
0
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
0
t
o
6
4
,
w
o
m
0
t
o
6
4
}
,
{
{
"
T
e
s
t
D
a
t
a
T
a
b
l
e
"
,
A
l
l
}
,
"
T
e
s
t
C
o
n
c
l
u
s
i
o
n
"
}
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
:
N
o
v
a
l
i
d
t
e
s
t
s
w
e
r
e
f
o
u
n
d
u
n
d
e
r
t
h
e
g
i
v
e
n
a
s
s
u
m
p
t
i
o
n
s
.
T
h
e
K
r
u
s
k
a
l
W
a
l
l
i
s
t
e
s
t
w
i
l
l
b
e
u
s
e
d
b
u
t
m
a
y
p
r
o
d
u
c
e
u
n
r
e
l
i
a
b
l
e
r
e
s
u
l
t
s
.
S
t
a
t
i
s
t
i
c
P
-
V
a
l
u
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
2
1
9
.
5
6
1
1
.
2
8
8
0
5
×
-
5
8
1
0
,
T
h
e
n
u
l
l
h
y
p
o
t
h
e
s
i
s
t
h
a
t
t
h
e
m
e
a
n
d
i
f
f
e
r
e
n
c
e
i
s
0
i
s
r
e
j
e
c
t
e
d
a
t
t
h
e
5
p
e
r
c
e
n
t
l
e
v
e
l
b
a
s
e
d
o
n
t
h
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
t
e
s
t
.
This figure shows a comparison between men and women deceased in 2019. The number in the upper part is the p-value of the comparison, “No test” means that the LocationEquivalenceTest did not find a valid test to compare the two vectors, like shown up here. There are significant variations in the age rank: 65-79 and 80-89
Esta figura muestra una comparación entre hombres y mujeres fallecidos en 2019. El número en la parte superior es el valor p de la comparación, “Sin prueba” significa que la Prueba de equivalencia de ubicación no encontró una prueba válida para comparar los dos vectores, como se muestra aquí Hay variaciones significativas en el rango de edad: 65-79 y 80-89
m
e
n
0
t
o
6
4
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
2
]
]
,
0
.
`
]
;
m
e
n
6
5
t
o
7
9
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
3
]
]
,
0
.
`
]
;
m
e
n
8
0
t
o
8
9
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
4
]
]
,
0
.
`
]
;
m
e
n
9
0
t
o
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
5
]
]
,
0
.
`
]
;
w
o
m
0
t
o
6
4
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
6
]
]
,
0
.
`
]
;
w
o
m
6
5
t
o
7
9
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
7
]
]
,
0
.
`
]
;
w
o
m
8
0
t
o
8
9
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
8
]
]
,
0
.
`
]
;
w
o
m
9
0
t
o
i
n
2
0
2
0
=
D
e
l
e
t
e
C
a
s
e
s
[
d
e
a
t
h
B
y
S
e
x
[
[
9
;
;
,
1
9
]
]
,
0
.
`
]
;
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
L
a
b
e
l
e
d
[
{
m
e
n
0
t
o
6
4
i
n
2
0
2
0
,
w
o
m
0
t
o
6
4
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
6
5
t
o
7
9
i
n
2
0
2
0
,
w
o
m
6
5
t
o
7
9
i
n
2
0
2
0
}
,
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
6
5
t
o
7
9
i
n
2
0
2
0
,
w
o
m
6
5
t
o
7
9
i
n
2
0
2
0
}
]
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
8
0
t
o
8
9
i
n
2
0
2
0
,
w
o
m
8
0
t
o
8
9
i
n
2
0
2
0
}
,
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
8
0
t
o
8
9
i
n
2
0
2
0
,
w
o
m
8
0
t
o
8
9
i
n
2
0
2
0
}
]
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
9
0
t
o
i
n
2
0
2
0
,
w
o
m
9
0
t
o
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
}
,
C
h
a
r
t
L
a
b
e
l
s
{
P
l
a
c
e
d
[
{
"
0
-
6
4
"
,
"
6
5
-
7
9
"
,
"
8
0
-
8
9
"
,
"
9
0
+
"
}
,
A
x
i
s
]
,
P
l
a
c
e
d
[
{
"
"
,
"
"
,
"
"
,
"
"
}
,
A
x
i
s
]
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
m
e
n
a
n
d
w
o
m
e
n
,
2
0
2
0
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
F
r
a
m
e
L
a
b
e
l
{
"
A
g
e
"
,
"
#
o
f
d
e
a
t
h
"
}
,
C
h
a
r
t
L
e
g
e
n
d
s
{
"
M
e
n
"
,
"
W
o
m
e
n
"
}
,
B
a
s
e
S
t
y
l
e
1
4
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
,
I
m
a
g
e
S
i
z
e
7
0
0
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
]
This figure shows a comparison between men and women deceased in 2020 The number in the upper part is the p-value of the comparison, “No test” means that the LocationEquivalenceTest did not find a valid test to compare the two vectors. There are significant variations in the age rank: 65-79 and 80-89.
Esta figura muestra una comparación entre hombres y mujeres fallecidos en 2020 El número en la parte superior es el valor p de la comparación, “Sin prueba” significa que la Prueba de equivalencia de ubicación no encontró una prueba válida para comparar los dos vectores. Hay variaciones significativas en el rango de edad: 65-79 y 80-89.
Now it will be great to compare 2019 vs 2020
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
L
a
b
e
l
e
d
[
{
m
e
n
0
t
o
6
4
,
m
e
n
0
t
o
6
4
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
6
5
t
o
7
9
,
m
e
n
6
5
t
o
7
9
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
8
0
t
o
8
9
,
m
e
n
8
0
t
o
8
9
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
9
0
t
o
,
m
e
n
9
0
t
o
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
}
,
C
h
a
r
t
L
a
b
e
l
s
{
P
l
a
c
e
d
[
{
"
0
-
6
4
"
,
"
6
5
-
7
9
"
,
"
8
0
-
8
9
"
,
"
9
0
+
"
}
,
A
x
i
s
]
,
P
l
a
c
e
d
[
{
"
"
,
"
"
,
"
"
,
"
"
}
,
A
x
i
s
]
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
m
e
n
2
0
1
9
v
s
2
0
2
0
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
F
r
a
m
e
L
a
b
e
l
{
"
A
g
e
"
,
"
#
o
f
d
e
a
t
h
"
}
,
C
h
a
r
t
L
e
g
e
n
d
s
{
"
M
e
n
2
0
1
9
"
,
"
M
e
n
2
0
2
0
"
}
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
,
B
a
s
e
S
t
y
l
e
1
4
,
I
m
a
g
e
S
i
z
e
7
0
0
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
9
0
t
o
,
m
e
n
9
0
t
o
i
n
2
0
2
0
}
,
{
{
"
T
e
s
t
D
a
t
a
T
a
b
l
e
"
,
A
l
l
}
,
"
T
e
s
t
C
o
n
c
l
u
s
i
o
n
"
}
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
:
N
o
v
a
l
i
d
t
e
s
t
s
w
e
r
e
f
o
u
n
d
u
n
d
e
r
t
h
e
g
i
v
e
n
a
s
s
u
m
p
t
i
o
n
s
.
T
h
e
K
r
u
s
k
a
l
W
a
l
l
i
s
t
e
s
t
w
i
l
l
b
e
u
s
e
d
b
u
t
m
a
y
p
r
o
d
u
c
e
u
n
r
e
l
i
a
b
l
e
r
e
s
u
l
t
s
.
S
t
a
t
i
s
t
i
c
P
-
V
a
l
u
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
5
1
.
2
6
7
9
2
.
0
4
1
9
×
-
1
3
1
0
,
T
h
e
n
u
l
l
h
y
p
o
t
h
e
s
i
s
t
h
a
t
t
h
e
m
e
a
n
d
i
f
f
e
r
e
n
c
e
i
s
0
i
s
r
e
j
e
c
t
e
d
a
t
t
h
e
5
p
e
r
c
e
n
t
l
e
v
e
l
b
a
s
e
d
o
n
t
h
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
t
e
s
t
.
This figure shows a comparison between men 2019 vs 2020. The number in the upper part is the p-value of the comparison, “No test” means that the LocationEquivalenceTest did not find a valid test to compare the two vectors.
Esta figura muestra una comparación entre hombres 2019 vs 2020. El número en la parte superior es el valor p de la comparación, “Sin prueba” significa que la Prueba de Equivalencia de Ubicación no encontró una prueba válida para comparar los dos vectores.
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
L
a
b
e
l
e
d
[
{
w
o
m
0
t
o
6
4
,
w
o
m
0
t
o
6
4
i
n
2
0
2
0
}
,
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
w
o
m
0
t
o
6
4
,
w
o
m
0
t
o
6
4
i
n
2
0
2
0
}
]
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
w
o
m
6
5
t
o
7
9
,
w
o
m
6
5
t
o
7
9
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
w
o
m
8
0
t
o
8
9
,
w
o
m
8
0
t
o
8
9
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
w
o
m
9
0
t
o
,
w
o
m
9
0
t
o
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
}
,
C
h
a
r
t
L
a
b
e
l
s
{
P
l
a
c
e
d
[
{
"
0
-
6
4
"
,
"
6
5
-
7
9
"
,
"
8
0
-
8
9
"
,
"
9
0
+
"
}
,
A
x
i
s
]
,
P
l
a
c
e
d
[
{
"
"
,
"
"
,
"
"
,
"
"
}
,
A
x
i
s
]
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
m
e
n
a
n
d
w
o
m
e
n
,
2
0
1
9
v
s
2
0
2
0
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
F
r
a
m
e
L
a
b
e
l
{
"
A
g
e
"
,
"
#
o
f
d
e
a
t
h
"
}
,
C
h
a
r
t
L
e
g
e
n
d
s
{
"
W
o
m
e
n
2
0
1
9
"
,
"
W
o
m
e
n
2
0
2
0
"
}
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
,
B
a
s
e
S
t
y
l
e
1
4
,
I
m
a
g
e
S
i
z
e
7
0
0
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
w
o
m
9
0
t
o
,
w
o
m
9
0
t
o
i
n
2
0
2
0
}
,
{
{
"
T
e
s
t
D
a
t
a
T
a
b
l
e
"
,
A
l
l
}
,
"
T
e
s
t
C
o
n
c
l
u
s
i
o
n
"
}
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
:
N
o
v
a
l
i
d
t
e
s
t
s
w
e
r
e
f
o
u
n
d
u
n
d
e
r
t
h
e
g
i
v
e
n
a
s
s
u
m
p
t
i
o
n
s
.
T
h
e
K
r
u
s
k
a
l
W
a
l
l
i
s
t
e
s
t
w
i
l
l
b
e
u
s
e
d
b
u
t
m
a
y
p
r
o
d
u
c
e
u
n
r
e
l
i
a
b
l
e
r
e
s
u
l
t
s
.
S
t
a
t
i
s
t
i
c
P
-
V
a
l
u
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
6
2
.
5
7
0
5
3
.
1
7
4
9
×
-
1
6
1
0
,
T
h
e
n
u
l
l
h
y
p
o
t
h
e
s
i
s
t
h
a
t
t
h
e
m
e
a
n
d
i
f
f
e
r
e
n
c
e
i
s
0
i
s
r
e
j
e
c
t
e
d
a
t
t
h
e
5
p
e
r
c
e
n
t
l
e
v
e
l
b
a
s
e
d
o
n
t
h
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
t
e
s
t
.
This figure shows a comparison between women 2019 vs 2020. The number at the top is the p-value of the comparison, “No test” means that the Location Equivalence Test did not find a valid test to compare the two vectors. Comparison is observed in the 0-64 age range without significance.
Esta figura muestra una comparación entre mujeres 2019 vs 2020. El número en la parte superior es el valor p de la comparación, “Sin prueba” significa que la Prueba de Equivalencia de Ubicación no encontró una prueba válida para comparar los dos vectores. Se observa comparación en el rango de edad 0-64 sin significancia.
By sex and age
d
a
t
a
=
I
m
p
o
r
t
[
F
i
l
e
N
a
m
e
J
o
i
n
[
{
N
o
t
e
b
o
o
k
D
i
r
e
c
t
o
r
y
[
]
,
"
2
0
2
0
-
0
5
-
0
8
-
-
-
p
r
e
l
i
m
i
n
a
r
-
s
t
a
t
i
s
t
i
k
-
o
v
e
r
-
d
o
d
a
-
i
n
k
l
-
e
n
g
.
x
l
s
x
"
}
]
,
{
"
X
L
S
X
"
,
"
D
a
t
a
"
,
1
0
}
]
;
T
a
b
l
e
F
o
r
m
[
d
a
t
a
,
T
a
b
l
e
H
e
a
d
i
n
g
s
A
u
t
o
m
a
t
i
c
]
;
(
*
D
e
a
t
h
o
f
m
e
n
i
n
2
0
1
5
s
e
g
m
e
n
t
e
d
b
y
a
g
e
-
M
u
e
r
t
e
d
e
h
o
m
b
r
e
s
e
n
2
0
1
5
s
e
g
m
e
n
t
a
d
o
s
p
o
r
e
d
a
d
*
)
m
e
n
0
t
o
6
4
i
n
2
0
1
5
=
d
a
t
a
[
[
2
;
;
5
4
,
5
]
]
;
m
e
n
6
5
t
0
7
9
i
n
2
0
1
5
=
d
a
t
a
[
[
5
5
;
;
1
0
7
,
5
]
]
;
m
e
n
8
0
t
o
8
9
i
n
2
0
1
5
=
d
a
t
a
[
[
1
0
8
;
;
1
6
0
,
5
]
]
;
m
e
n
9
0
p
l
u
s
I
n
2
0
1
5
=
d
a
t
a
[
[
1
6
1
;
;
2
1
3
,
5
]
]
;
(
*
D
e
a
t
h
o
f
m
e
n
i
n
2
0
1
5
s
e
g
m
e
n
t
e
d
b
y
a
g
e
,
u
n
t
i
l
M
a
y
6
-
M
u
e
r
t
e
d
e
h
o
m
b
r
e
s
e
n
2
0
1
5
s
e
g
m
e
n
t
a
d
o
s
p
o
r
e
d
a
d
,
h
a
s
t
a
m
a
y
o
6
*
)
m
e
n
0
t
o
6
4
i
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
2
;
;
2
0
,
5
]
]
;
m
e
n
6
5
t
0
7
9
i
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
5
5
;
;
7
3
,
5
]
]
;
m
e
n
8
0
t
o
8
9
i
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
1
0
8
;
;
1
2
6
,
5
]
]
;
m
e
n
9
0
p
l
u
s
I
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
1
6
1
;
;
1
7
9
,
5
]
]
;
(
*
D
e
a
t
h
o
f
w
o
m
e
n
i
n
2
0
1
5
s
e
g
m
e
n
t
e
d
b
y
a
g
e
-
M
u
e
r
t
e
d
e
m
u
j
e
r
e
s
e
n
2
0
1
5
s
e
g
m
e
n
t
a
d
o
s
p
o
r
e
d
a
d
*
)
w
o
m
0
t
o
6
4
i
n
2
0
1
5
=
d
a
t
a
[
[
2
1
4
;
;
2
6
6
,
5
]
]
;
w
o
m
6
5
t
o
7
9
i
n
2
0
1
5
=
d
a
t
a
[
[
2
6
7
;
;
3
1
9
,
5
]
]
;
w
o
m
8
0
t
o
8
9
i
n
2
0
1
5
=
d
a
t
a
[
[
3
2
0
;
;
3
7
2
,
5
]
]
;
w
o
m
9
0
p
l
u
s
I
n
2
0
1
5
=
d
a
t
a
[
[
3
7
3
;
;
4
2
5
,
5
]
]
;
(
*
D
e
a
t
h
o
f
w
o
m
e
n
i
n
2
0
1
5
s
e
g
m
e
n
t
e
d
b
y
a
g
e
,
u
n
t
i
l
M
a
y
6
-
M
u
e
r
t
e
d
e
m
u
j
e
r
e
s
e
n
2
0
1
5
s
e
g
m
e
n
t
a
d
o
s
p
o
r
e
d
a
d
,
h
a
s
t
a
m
a
y
o
6
*
)
w
o
m
0
t
o
6
4
i
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
2
1
4
;
;
2
3
2
,
5
]
]
;
w
o
m
6
5
t
o
7
9
i
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
2
6
7
;
;
2
8
5
,
5
]
]
;
w
o
m
8
0
t
o
8
9
i
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
3
2
0
;
;
3
3
8
,
5
]
]
;
w
o
m
9
0
p
l
u
s
I
n
2
0
1
5
m
a
y
6
=
d
a
t
a
[
[
3
7
3
;
;
3
9
1
,
5
]
]
;
(
*
D
e
a
t
h
o
f
m
e
n
i
n
2
0
2
0
s
e
g
m
e
n
t
e
d
b
y
a
g
e
-
M
u
e
r
t
e
d
e
h
o
m
b
r
e
s
e
n
2
0
2
0
s
e
g
m
e
n
t
a
d
o
s
p
o
r
e
d
a
d
*
)
m
e
n
0
t
o
6
4
i
n
2
0
2
0
=
d
a
t
a
[
[
4
2
6
;
;
4
4
4
,
5
]
]
;
m
e
n
6
5
t
o
7
9
i
n
2
0
2
0
=
d
a
t
a
[
[
4
4
5
;
;
4
6
3
,
5
]
]
;
m
e
n
8
0
t
o
8
9
i
n
2
0
2
0
=
d
a
t
a
[
[
4
6
4
;
;
4
8
2
,
5
]
]
;
m
e
n
9
0
p
l
u
s
I
n
2
0
2
0
=
d
a
t
a
[
[
4
8
3
;
;
5
0
1
,
5
]
]
;
(
*
D
e
a
t
h
o
f
w
o
m
e
n
i
n
2
0
2
0
s
e
g
m
e
n
t
e
d
b
y
a
g
e
-
M
u
e
r
t
e
d
e
m
u
j
e
r
e
s
e
n
2
0
2
0
s
e
g
m
e
n
t
a
d
o
s
p
o
r
e
d
a
d
*
)
w
o
m
0
t
o
6
4
i
n
2
0
2
0
=
d
a
t
a
[
[
5
0
2
;
;
5
2
0
,
5
]
]
;
w
o
m
6
5
t
o
7
9
i
n
2
0
2
0
=
d
a
t
a
[
[
5
2
1
;
;
5
3
9
,
5
]
]
;
w
o
m
8
0
t
o
8
9
i
n
2
0
2
0
=
d
a
t
a
[
[
5
4
0
;
;
5
5
8
,
5
]
]
;
w
o
m
9
0
p
l
u
s
I
n
2
0
2
0
=
d
a
t
a
[
[
5
5
9
;
;
5
7
7
,
5
]
]
;
D
i
s
t
r
i
b
u
t
i
o
n
C
h
a
r
t
[
{
L
a
b
e
l
e
d
[
{
m
e
n
0
t
o
6
4
i
n
2
0
1
5
,
m
e
n
0
t
o
6
4
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
6
5
t
0
7
9
i
n
2
0
1
5
,
m
e
n
6
5
t
o
7
9
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
8
0
t
o
8
9
i
n
2
0
1
5
,
m
e
n
8
0
t
o
8
9
i
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
,
L
a
b
e
l
e
d
[
{
m
e
n
9
0
p
l
u
s
I
n
2
0
1
5
,
m
e
n
9
0
p
l
u
s
I
n
2
0
2
0
}
,
"
N
o
t
e
s
t
"
,
A
b
o
v
e
]
}
,
C
h
a
r
t
L
a
b
e
l
s
{
P
l
a
c
e
d
[
{
"
0
-
6
4
"
,
"
6
5
-
7
9
"
,
"
8
0
-
8
9
"
,
"
9
0
+
"
}
,
A
x
i
s
]
,
P
l
a
c
e
d
[
{
"
"
,
"
"
,
"
"
,
"
"
}
,
A
x
i
s
]
}
,
C
h
a
r
t
E
l
e
m
e
n
t
F
u
n
c
t
i
o
n
C
h
a
r
t
E
l
e
m
e
n
t
D
a
t
a
[
"
P
o
i
n
t
D
e
n
s
i
t
y
"
]
,
P
l
o
t
L
a
b
e
l
"
N
u
m
b
e
r
o
f
d
e
a
t
h
s
r
e
p
o
r
t
e
d
t
o
S
t
a
t
i
s
t
i
c
s
S
w
e
d
e
n
,
p
e
r
w
e
e
k
,
M
E
N
2
0
1
5
-
2
0
1
9
a
n
d
2
0
2
0
1
(
e
n
t
i
r
e
c
o
u
n
t
r
y
)
"
,
C
h
a
r
t
S
t
y
l
e
"
S
o
u
t
h
w
e
s
t
C
o
l
o
r
s
"
,
F
r
a
m
e
L
a
b
e
l
{
"
A
g
e
"
,
"
#
o
f
d
e
a
t
h
"
}
,
C
h
a
r
t
L
e
g
e
n
d
s
{
"
m
e
n
2
0
1
5
-
2
0
1
9
"
,
"
m
e
n
2
0
2
0
"
}
,
B
a
s
e
S
t
y
l
e
1
4
,
I
m
a
g
e
S
i
z
e
7
0
0
,
S
c
a
l
i
n
g
F
u
n
c
t
i
o
n
s
"
L
o
g
"
]
This figure shows a comparison between men 2019 vs 2020 weekly. The number in the upper part is the p-value of the comparison, “No test” means that the LocationEquivalenceTest did not find a valid test to compare the two vectors.
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
[
{
m
e
n
0
t
o
6
4
i
n
2
0
1
5
,
m
e
n
0
t
o
6
4
i
n
2
0
2
0
}
,
{
{
"
T
e
s
t
D
a
t
a
T
a
b
l
e
"
,
A
l
l
}
,
"
T
e
s
t
C
o
n
c
l
u
s
i
o
n
"
}
]
L
o
c
a
t
i
o
n
E
q
u
i
v
a
l
e
n
c
e
T
e
s
t
:
N
o
v
a
l
i
d
t
e
s
t
s
w
e
r
e
f
o
u
n
d
u
n
d
e
r
t
h
e
g
i
v
e
n
a
s
s
u
m
p
t
i
o
n
s
.
T
h
e
K
r
u
s
k
a
l
W
a
l
l
i
s
t
e
s
t
w
i
l
l
b
e
u
s
e
d
b
u
t
m
a
y
p
r
o
d
u
c
e
u
n
r
e
l
i
a
b
l
e
r
e
s
u
l
t
s
.
S
t
a
t
i
s
t
i
c
P
-
V
a
l
u
e
K
r
u
s
k
a
l
-
W
a
l
l
i
s
0
.
0
9
8
0
2
4
7
0
.
7
5
6
6
5
6
,
T
h
e
n
u
l
l
h
y
p
o
t
h
e
s
i
s
t
h
a
t
t
h
e