Message Boards Message Boards

0
|
4456 Views
|
4 Replies
|
1 Total Likes
View groups...
Share
Share this post:

How to realize the inverse Laplace Transform?

Posted 4 years ago

This expression came from the Laplace Transform,

(Sqrt[Dc] E^((
 Sqrt[s] (lh - x))/Sqrt[Dc]) F1)/(Sqrt[s] (s - \[Theta]c))

where s is the unique argument. Now it is needed to make the inverse Laplace Transform and it can be realized by the convolution theorem. But it will be simpler to do it with the Residue Theorem. Would you like to help me with this issue? Thanks.

POSTED BY: Jacques Ou
4 Replies
Posted 4 years ago

The ILT by convolution has already done. I am seeking for the ILT by the residue theorem which seems more capable.

In[88]:= (*ILT of eq1 which came from LT.*)

In[89]:= eq1 = (Sqrt[Dc] E^((Sqrt[s] (lh - x))/Sqrt[Dc]) F1)/(
 Sqrt[s] (s - \[Theta]c))

Out[89]= (Sqrt[Dc] E^((
 Sqrt[s] (lh - x))/Sqrt[Dc]) F1)/(Sqrt[s] (s - \[Theta]c))

In[90]:= (*The numerator of eq1 is the first part.*)

In[91]:= eq2 = Numerator[eq1]/Sqrt[s]

Out[91]= (Sqrt[Dc] E^((Sqrt[s] (lh - x))/Sqrt[Dc]) F1)/Sqrt[s]

In[92]:= (*The denominator of eq1 is the second part.*)

In[93]:= eq3 = Sqrt[s]/Denominator[eq1]

Out[93]= 1/(s - \[Theta]c)

In[94]:= (*The first part.*)

In[95]:= eq4 = InverseLaplaceTransform[eq2, s, t] // Simplify // Normal

Out[95]= (E^(-((lh - x)^2/(4 Dc t))) F1 Sqrt[Dc/t])/Sqrt[\[Pi]]

In[96]:= (*The second parts.*)

In[97]:= eq5 = InverseLaplaceTransform[eq3, s, t] // Simplify // Normal

Out[97]= E^(t \[Theta]c)

In[98]:= (*convolution of eq4 and eq5.*)

In[99]:= eq6 = Integrate[eq4*(eq5 /. {t -> (-t + T) }), {t, 0, T}]

Out[99]= \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(T\)]\(
\*FractionBox[\(
\*SuperscriptBox[\(E\), \(\(-
\*FractionBox[
SuperscriptBox[\((lh - x)\), \(2\)], \(4\ Dc\ t\)]\) + \((\(-t\) + 
         T)\)\ \[Theta]c\)]\ F1\ 
\*SqrtBox[
FractionBox[\(Dc\), \(t\)]]\), 
SqrtBox[\(\[Pi]\)]] \[DifferentialD]t\)\)

In[100]:= (*change the variable's symbol of eq6. Solution after \
InverseLaplaceTransform.*)

In[101]:= eq7 = eq6 /. {t -> \[Tau]} /. {T -> t}

Out[101]= \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(
\*FractionBox[\(
\*SuperscriptBox[\(E\), \(\[Theta]c\ \((t - \[Tau])\) - 
\*FractionBox[
SuperscriptBox[\((lh - x)\), \(2\)], \(4\ Dc\ \[Tau]\)]\)]\ F1\ 
\*SqrtBox[
FractionBox[\(Dc\), \(\[Tau]\)]]\), 
SqrtBox[\(\[Pi]\)]] \[DifferentialD]\[Tau]\)\)
POSTED BY: Updating Name

Hello,with convolution theorem I have:

L1 = InverseLaplaceTransform[(
  Sqrt[Dc] E^((Sqrt[s] (lh - x))/Sqrt[Dc]) F1)/Sqrt[s] , s, t]
L2 = InverseLaplaceTransform[  1/(s - \[Theta]c), s, t]

L12 = Integrate[(L1[[1]] /. t -> (t - \[Tau]))*(L2 /. 
     t -> \[Tau]), {\[Tau], 0, t}, 
  Assumptions -> {t > 0, F1 > 0, Dc > 0, \[Theta]c > 0, lh > 0, 
    x > 0}]
 (*(Dc E^(t \[Theta]c - 
   Sqrt[\[Theta]c/Dc] Abs[lh - x]) F1 (1 + 
    Erf[(2 t Sqrt[Dc \[Theta]c] - Abs[lh - x])/(2 Sqrt[Dc t])] + 
    E^(2 Sqrt[\[Theta]c/Dc]
       Abs[lh - x]) (-1 + 
       Erf[(2 t Sqrt[Dc \[Theta]c] + Abs[lh - x])/(
        2 Sqrt[Dc t])])))/(2 Sqrt[Dc \[Theta]c])*)

$\mathcal{L}_s^{-1}\left[\frac{\sqrt{\text{Dc}} e^{\frac{\sqrt{s} (\text{lh}-x)}{\sqrt{\text{Dc}}}} \text{F1}}{\sqrt{s} (s-\text{$\theta $c})}\right](t)=\frac{\text{Dc} e^{t \text{$\theta $c}-\sqrt{\frac{\text{$\theta $c}}{\text{Dc}}} | \text{lh}-x| } \text{F1} \left(1+\text{erf}\left(\frac{2 t \sqrt{\text{Dc} \text{$\theta $c}}-| \text{lh}-x| }{2 \sqrt{\text{Dc} t}}\right)+e^{2 \sqrt{\frac{\text{$\theta $c}}{\text{Dc}}} | \text{lh}-x| } \left(-1+\text{erf}\left(\frac{2 t \sqrt{\text{Dc} \text{$\theta $c}}+| \text{lh}-x| }{2 \sqrt{\text{Dc} t}}\right)\right)\right)}{2 \sqrt{\text{Dc} \text{$\theta $c}}}$

Regards M.I.

Attachments:
POSTED BY: Mariusz Iwaniuk
Posted 4 years ago

Thanks. I have read your codes intensively.

POSTED BY: Jacques Ou
Posted 4 years ago

Your version of Mathematica is higher.

POSTED BY: Jacques Ou
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract