Group Abstract Group Abstract

Message Boards Message Boards

0
|
4.9K Views
|
1 Reply
|
1 Total Like
View groups...
Share
Share this post:

Mathematics- Can equations for a, b & c be worked out?

Posted 5 years ago

Is this possible to work out?

From the three equations below I need the equation to what a=, b=, and c=

a equals the same value in all three equations.

b equals the same value in all three equations.

c equals the same value in all three equations.

I have all the known variables apart from a,b and c.

D - G = a(D-1) + b(D-1)² + c(D-1)³

E - H = a(E-1) + b(E-1)² + c(E-1)³

F - J = a(F-1) + b(F-1)² + c(F-1)³

Known Variables

D = 1.8926846

E = 2.5686994

F = 3.3756357

G = 1.892797681

H = 2.568917298

J = 3.376008599

D - G = -1.1308073E-04

E - H = -2.1789774E-04

F - J = -3.7289941E-04

D-1 = 0.8926846

E-1 = 1.5686994

F-1 = 2.3756357

Unknown equation (help !)

a = (equation required, must not contain variables b or c)

b = (equation required, must not contain variables a or c)

c = (equation required, must not contain variables a or b)

To possibly help as an example

Below are values of a,b and c that I have been given;

a = -1.145854E-04

b = -1.095579E-05

c = -2.898115E-06

these values of a, b, c have been calculated from the above known variables and the three equations but I don’t know the equations of how a, b, c have been worked out separately from the above data?

The known variables are from measurements, so if they change then a,b,c will also change, hence why I require the equation to work out the new values of a, b, c.

POSTED BY: J F
Posted 5 years ago

Yes -- easy for Mathematica:

(* the list of equations *)

eqs = {
   d - g == a (d - 1) + b (d - 1)^2 + c (d - 1)^3,
   e - h == a (e - 1) + b (e - 1)^2 + c (e - 1)^3,
   f - j == a (f - 1) + b (f - 1)^2 + c (f - 1)^3
   };

(* the solution as a list of rules *)

sol = Solve[eqs, {a, b, c}]

(*{{a\[Rule]-((-((-1+d)^3 (-1+f)^2-(-1+d)^2 (-1+f)^3) ((-1+e)^3 \
(d-g)-(-1+d)^3 (e-h))+((-1+d)^3 (-1+e)^2-(-1+d)^2 (-1+e)^3) ((-1+f)^3 \
(d-g)-(-1+d)^3 (f-j)))/(((-1+d)^3 (-1+e)^2-(-1+d)^2 (-1+e)^3) \
(-(-1+d)^3 (1-f)+(1-d) (-1+f)^3)-(-(-1+d)^3 (1-e)+(1-d) (-1+e)^3) \
((-1+d)^3 (-1+f)^2-(-1+d)^2 (-1+f)^3))),b\[Rule]-((-3 d^2 e+d^3 e+3 d \
e^2-d e^3+3 d^2 f-d^3 f-3 e^2 f+e^3 f-3 d f^2+3 e f^2+d f^3-e f^3+2 e \
g-3 e^2 g+e^3 g-2 f g+3 e^2 f g-e^3 f g+3 f^2 g-3 e f^2 g-f^3 g+e f^3 \
g-2 d h+3 d^2 h-d^3 h+2 f h-3 d^2 f h+d^3 f h-3 f^2 h+3 d f^2 h+f^3 \
h-d f^3 h+2 d j-3 d^2 j+d^3 j-2 e j+3 d^2 e j-d^3 e j+3 e^2 j-3 d e^2 \
j-e^3 j+d e^3 j)/((-1+d) (d-e) (-1+e) (d-f) (e-f) \
(-1+f))),c\[Rule]-((-d^2 e+d e^2+d^2 f-e^2 f-d f^2+e f^2+e g-e^2 g-f \
g+e^2 f g+f^2 g-e f^2 g-d h+d^2 h+f h-d^2 f h-f^2 h+d f^2 h+d j-d^2 \
j-e j+d^2 e j+e^2 j-d e^2 j)/((-1+d) (d-e) (-1+e) (d-f) (e-f) \
(-1+f)))}}*)

(* your set of values as a list of rules *)

values = {
   d -> 1.8926846,
   e -> 2.5686994,
   f -> 3.3756357,
   g -> 1.892797681,
   h -> 2.568917298,
   j -> 3.376008599
   };

(* substtute the values into the solution *)

sol /. values

(*{{a\[Rule]-0.0001145856497967586`,b\[Rule]-0.000010955938570381746`,\
c\[Rule]-2.8979714654621227`*^-6}} *)

(* If you want a more readable list of the solution execute this *)

{a, b, c} /. sol // Simplify // Transpose // TableForm

I attach the Mathematica file. Note that I used lowercase symbols to avoid conflict with reserved names.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard
Be respectful. Review our Community Guidelines to understand your role and responsibilities. Community Terms of Use