WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Premier Service
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Wolfram Science
Physics
Graphics and Visualization
Group Theory
Wolfram Language
Wolfram Summer School
7
Xiyuan Gao
[WSS20] Exploring CPT invariance in Wolfram Models
Xiyuan Gao, School of Physics, Nankai University
Posted
6 months ago
1923 Views
|
1 Reply
|
7 Total Likes
Follow this post
|
CPT theorem claims that one cannot build a Lorentz-invariant quantum field theory with a Hermitian Hamiltonian that violates the combined symmetry of charge-conjugation, parity and time-reversal, which is critical in the Standard Model of particle physics. In Wolfram Models, though continuous Lorentz invariance is maintained, there are very few investigations on such discrete transformations till now. In our project, we confirmed what C, P and T could correspond to in WPP and offered many examples to explain them in different cases. We have also checked the reversibility of all the 947 rules in the registry of Wolfram Model Data. Furthermore, a potential source of Parity and CP violation in Wolfram Model is proposed, which agrees well with the conclusions of SM under certain conditions.
Introduction
Invariance and Covariance
Generally, we have two equivalent views on a transformation group
Λ
acting on a certain operator Ô. One is transforming the basis and the other one is changing the operator itself, corresponding to different representations of
Λ
.
U
(
Λ
)
Ô
(
x
)
-
1
U
(
Λ
)
=
-
1
M
(
Λ
)
Ô
(
Λ
x
)
where U(
Λ
) and M(
Λ
) are the representations of
Λ
in basis space (Hilbert space) and operator space (spinor space for fermions).
We can define that the operator Ô(x) is
Λ
invariant if M(
Λ
) is an identity matrix. The equations which only contains
Λ
invariant operators will preserve its form under the
Λ
transformation, which is called covariant. In canonical quantum field framework, as the Lagrange Density
ℒ
contains all the dynamic information and is a real scalar operator, which means M(
Λ
) could either be 1 or -1, a QFT is
Λ
invariant if
ℒ
(
x
)
ℒ
(
Λ
x
)
.
S
p
e
c
i
f
i
c
a
l
l
y
,
ℒ
i
s
c
o
v
a
r
i
a
n
t
u
n
d
e
r
c
o
n
t
i
n
u
o
u
s
L
o
r
e
n
t
z
T
r
a
n
s
f
o
r
m
a
t
i
o
n
+
S
O
(
3
,
1
)
.
H
o
w
e
v
e
r
,
a
g
e
n
e
r
a
l
L
o
r
e
n
t
z
G
r
o
u
p
s
h
o
u
l
d
b
e
O
(
3
,
1
)
.
S
o
,
w
e
n
e
e
d
t
o
c
a
r
e
a
b
o
u
t
t
h
e
d
i
s
c
r
e
t
e
t
r
a
n
s
f
o
r
m
.
M
o
r
e
o
v
e
r
,
i
f
a
f
i
e
l
d
t
h
e
o
r
y
h
a
s
g
l
o
b
a
l
U
(
1
)
s
y
m
m
e
t
r
y
,
w
e
c
a
n
g
e
t
t
h
e
c
o
n
s
e
r
v
e
d
N
o
e
t
h
e
r
C
u
r
r
e
n
t
j
μ
=
i
(
(
∂
μ
*
ϕ
)
ϕ
-
h
.
c
)
a
n
d
i
n
t
e
g
r
a
t
e
i
t
’
s
f
i
r
s
t
c
o
m
p
o
n
e
n
t
i
n
a
l
l
s
p
a
c
e
Q
=
∫
3
x
j
0
(
x
)
,
w
h
e
r
e
t
h
i
s
c
o
n
s
e
r
v
e
d
c
h
a
r
g
e
i
s
d
e
f
i
n
e
d
a
s
E
l
e
c
t
r
o
M
a
g
n
e
t
i
c
C
h
a
r
g
e
.
I
f
w
e
e
x
c
h
a
n
g
e
a
f
i
e
l
d
a
n
d
i
t
s
c
o
m
p
l
e
x
c
o
n
j
u
g
a
t
e
,
i
t
’
l
l
g
e
t
a
m
i
n
u
s
s
y
m
b
o
l
a
n
d
t
h
i
s
o
p
e
r
a
t
i
o
n
i
s
c
a
l
l
e
d
c
h
a
r
g
e
c
o
n
j
u
g
a
t
i
o
n
.
T
h
e
r
e
f
o
r
e
,
i
f
Λ
c
o
r
r
e
s
p
o
n
d
s
t
o
t
i
m
e
r
e
v
e
r
s
a
l
,
p
a
r
i
t
y
a
n
d
c
h
a
r
g
e
c
o
n
j
u
g
a
t
e
,
w
e
c
a
n
d
e
r
i
v
e
h
o
w
ℒ
t
r
a
n
s
f
o
r
m
s
a
c
c
o
r
d
i
n
g
t
o
t
h
e
r
u
l
e
s
s
h
o
w
n
b
e
f
o
r
e
.
A
n
d
o
n
e
c
a
n
s
h
o
w
t
h
a
t
ℒ
d
o
e
s
n
’
t
c
h
a
n
g
e
u
n
d
e
r
c
o
m
b
i
n
e
d
C
P
T
t
r
a
n
s
f
o
r
m
,
w
h
i
c
h
i
s
c
a
l
l
e
d
C
P
T
t
h
e
o
r
e
m
.
I
t
h
a
s
d
e
e
p
p
h
y
s
i
c
a
l
i
m
p
l
i
c
a
t
i
o
n
s
a
n
d
l
e
a
v
e
s
u
s
m
a
n
y
o
p
e
n
q
u
e
s
t
i
o
n
s
.
However, we must be careful while analyzing its phenomenological results. For example, in a specific physical process, an abstract state corresponds to applying the field operator on the vacuum. So, though in canonical QFT only how an operators transforms under
Λ
group is meaningful, we need to change both of the differential equations and initial/boundary conditions in classical and quantum mechanics. Moreover, because the affined parameter is always set as time instead of intrinsic time under the nonrelativistic approximation, we also need to exchange the initial and final conditions while applying the time-reversal transformation. These are what time reversal (or
Λ
) invariance means conventionally, and it should be strictly called
Λ
covariance. In fact, we have different interpretation on symmetry. Invariance means that when we act
Λ
on a physical system, all the observable quantities do not change. But all we are talking about here is covariance instead of invariance, which just implies that our physical laws are independent of our description methods.
Discrete Groups in Wolfram Model
Via applying abstract replacement operations on set systems, we can get a discrete space-time formalism called Wolfram Model, which has a strong implication on the fundamental structures of Mathematical Physics. As known, Wolfram model is covariant under continue conformal transformation, so we can derive the basic conclusions of General Relativity like Einstein Equation and Geodesic Equations. However, there is only very limited analysis on the discrete groups in Wolfram Model, especially on parity, time reversal and charge conjugate. So, we made further investigation in this area during WSS2020 and get the following results.
In Wolfram Model, time is the index of causal foliations of hypergraph rewriting. If we choose the time of final states as zero-point, time-reversal corresponds to reversing the updating rules and regarding the final states of a normal process as the initial states of the backward process. We say a system is time-reversal invariant if the reversed process produces states graph isomorphic to the normal process and reversed final states identical to the original initial states. More details and examples are shown in the next section.
Although space is the general limiting structure of basic hypergraph, defined as clearly as time, Wolfram Model has only trivial spatial reflection symmetry. We can construct spatial items with different chirality, which means they can’t be overlapped via rotation and translation in 3D space, but their corresponding hypergraphs are isomorphic, implying identical physical observations. Here is an example.
{
G
r
a
p
h
3
D
[
{
1
2
,
2
3
,
3
1
,
1
2
,
1
-
>
4
,
1
-
>
4
,
2
-
>
4
,
3
-
>
4
,
1
-
>
5
,
2
-
>
5
,
3
-
>
5
}
]
,
G
r
a
p
h
3
D
[
{
1
2
,
2
3
,
3
1
,
1
2
,
1
-
>
4
,
2
-
>
4
,
3
-
>
4
,
1
-
>
5
,
1
-
>
5
,
2
-
>
5
,
3
-
>
5
}
]
}
I
n
[
]
:
=
,
O
u
t
[
]
=
As shown, reversing the layout does not change the graph itself, so that’s not a graph transformation. Otherwise, as U(1) group is still not clear in Wolfram Model, the conserved charge we introduced in the previous subsection is not well-defined. So, the charge conjugation operator is unclear in WPP. However, we can still mathematically define C transform as exchanging a field operator with its complex conjugate, corresponding to some basis transformation in Branchial Space.
Interestingly, if we combine C and P transformation, a deep physical implication emerges. In the Standard Model, we need neutrinos to be left-handed and anti-neutrinos to be right-handed, ignoring their mass and CP violation. It implies that we need to set some unitary structures to label the orientation of our space. Similarly, we can also construct such basic structures by setting proper initial condition. Then, we can define the direction of our spatial hypergraphs according to their relative chirality. In other words, spatial inversion in real physics is only local parity transform of the hypergraph. It means the parity of our space is decided by how we define particles and anti-particles, indicating strict CP conservation. Further examples and the assumed source of CP violation are shown in the following sections.
T reversibility
Simple examples
Deterministic Process
First of all, we can find time reversal symmetry is obviously maintained in a deterministic process. Here is an example and we can see the isomorphic evolution-events graph, expression-events graph and causal graph.
R
u
l
e
s
P
=
{
{
1
,
2
}
,
{
2
,
4
}
}
{
{
1
,
4
}
,
{
1
,
3
}
,
{
4
,
2
}
}
;
R
u
l
e
s
N
=
R
e
v
e
r
s
e
@
R
u
l
e
s
P
;
I
n
i
t
i
a
l
P
=
{
{
1
,
2
}
,
{
2
,
4
}
}
;
I
n
i
t
i
a
l
N
=
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
P
,
I
n
i
t
i
a
l
P
,
5
]
[
"
F
i
n
a
l
S
t
a
t
e
"
]
;
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
{
R
u
l
e
s
P
}
,
{
I
n
i
t
i
a
l
P
}
,
5
,
"
E
v
o
l
u
t
i
o
n
E
v
e
n
t
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
5
0
0
,
V
e
r
t
e
x
S
i
z
e
1
]
I
n
[
]
:
=
O
u
t
[
]
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
{
R
u
l
e
s
N
}
,
{
I
n
i
t
i
a
l
N
}
,
5
,
"
E
v
o
l
u
t
i
o
n
E
v
e
n
t
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
5
0
0
,
V
e
r
t
e
x
S
i
z
e
1
]
I
n
[
]
:
=
O
u
t
[
]
=
{
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
P
,
I
n
i
t
i
a
l
P
,
5
]
[
"
E
x
p
r
e
s
s
i
o
n
s
E
v
e
n
t
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
,
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
N
,
I
n
i
t
i
a
l
N
,
5
]
[
"
E
x
p
r
e
s
s
i
o
n
s
E
v
e
n
t
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
}
I
n
[
]
:
=
,
O
u
t
[
]
=
{
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
P
,
I
n
i
t
i
a
l
P
,
5
]
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
,
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
N
,
I
n
i
t
i
a
l
N
,
5
]
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
}
I
n
[
]
:
=
,
O
u
t
[
]
=
Global Multiway System
We need multiway system to construct the the basic mathematical structure of quantum mechanics. Here is an example of a time reversible multiway system.
f
i
n
a
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
A
"
"
A
B
"
,
"
B
"
"
A
C
"
}
,
"
A
B
"
,
3
]
/
/
L
a
s
t
;
{
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
A
"
"
A
B
"
,
"
B
"
"
A
C
"
}
,
"
A
B
"
,
3
,
"
S
t
a
t
e
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
6
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
,
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
A
B
"
"
A
"
,
"
A
C
"
"
B
"
}
,
f
i
n
a
l
,
3
,
"
S
t
a
t
e
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
6
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
}
I
n
[
]
:
=
,
O
u
t
[
]
=
However, not all processes in the multiway system are reversible. Just as in conventional QM framework, an effective Non-Hermitian Operators has a complexed eigenvalue
E
+
i
η
. But the eigenvalue of the reversed process is
E
-
i
η
because T is an antiunitary operator. Therefore, when we reverse back, we in fact recombined the basis of the initial state:
Σ
ψ
n
Σ
ψ
n
e
x
p
(
-
2
Δ
t
η
n
)
It obviously violates time reversal invariance. Here is another example where the T symmetry is broken.
f
i
n
a
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
A
"
"
B
"
,
"
B
"
"
A
C
"
}
,
"
A
B
"
,
3
]
/
/
L
a
s
t
;
{
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
A
"
"
B
"
,
"
B
"
"
A
C
"
}
,
"
A
B
"
,
3
,
"
S
t
a
t
e
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
,
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
B
"
"
A
"
,
"
A
C
"
"
B
"
}
,
f
i
n
a
l
,
3
,
"
S
t
a
t
e
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
0
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
}
I
n
[
]
:
=
,
O
u
t
[
]
=
Local Multiway System
The previous examples have only shown the structure of the 1st Order Numerical ODEs. However, lot’s of equations for Mathematical Physics like geodesic equation are second order. If we don’t want to construct two coupled evolution process, we have to utilize the local multiway system, where the same update rules can act on two time-like separated states simultaneously. Most of the states graph of the local multiway system is quite complex, but we can construct non-trivial deterministic systems. And here is an example which is T reversal invariant if we interpret the initial and final condition correctly.
R
o
t
a
t
e
W
o
l
f
r
a
m
M
o
d
e
l
[
{
{
{
1
,
2
}
,
{
2
,
3
}
}
{
{
3
,
4
}
}
}
,
{
{
1
,
2
}
,
{
2
,
3
}
}
,
2
0
,
"
E
v
e
n
t
S
e
l
e
c
t
i
o
n
F
u
n
c
t
i
o
n
"
N
o
n
e
]
[
"
C
a
u
s
a
l
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
3
0
]
,
P
i
2
I
n
[
]
:
=
O
u
t
[
]
=
R
o
t
a
t
e
W
o
l
f
r
a
m
M
o
d
e
l
[
{
{
{
1
,
2
}
,
{
2
,
3
}
}
{
{
3
,
4
}
}
}
,
{
{
1
,
2
}
,
{
2
,
3
}
}
,
2
0
,
"
E
v
e
n
t
S
e
l
e
c
t
i
o
n
F
u
n
c
t
i
o
n
"
N
o
n
e
]
[
"
E
x
p
r
e
s
s
i
o
n
s
E
v
e
n
t
s
G
r
a
p
h
"
,
I
m
a
g
e
S
i
z
e
2
0
]
,
P
i
2
I
n
[
]
:
=
O
u
t
[
]
=
Analysis of the registry
We have examined the reversibility of all the update rules in the Registry of Notable Universes. Among all the 947 models, 810 are identified not reversible or just definite process and 30 consume so much time or memory that we have to abort the calculation. Only 107 of the non-trivial rules are reversible after 3 steps. Here are our codes and results.
n
a
m
e
s
=
W
o
l
f
r
a
m
M
o
d
e
l
D
a
t
a
[
]
;
i
n
i
t
s
=
W
o
l
f
r
a
m
M
o
d
e
l
D
a
t
a
[
A
l
l
,
"
I
n
i
t
i
a
l
C
o
n
d
i
t
i
o
n
"
]
;
r
u
l
e
s
=
W
o
l
f
r
a
m
M
o
d
e
l
D
a
t
a
[
A
l
l
,
"
R
u
l
e
"
]
;
s
t
a
t
e
s
C
o
u
n
t
A
n
d
T
e
r
m
i
n
a
l
S
t
a
t
e
s
[
r
u
l
e
s
:
{
_
_
R
u
l
e
}
,
i
n
i
t
i
a
l
:
{
{
{
_
I
n
t
e
g
e
r
.
.
}
.
.
.
}
.
.
}
,
s
t
e
p
s
_
I
n
t
e
g
e
r
]
:
=
W
i
t
h
[
{
s
t
a
t
e
s
G
r
a
p
h
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
r
u
l
e
s
,
i
n
i
t
i
a
l
,
s
t
e
p
s
,
"
S
t
a
t
e
s
G
r
a
p
h
S
t
r
u
c
t
u
r
e
"
]
}
,
{
V
e
r
t
e
x
C
o
u
n
t
[
s
t
a
t
e
s
G
r
a
p
h
]
,
V
e
r
t
e
x
L
i
s
t
[
s
t
a
t
e
s
G
r
a
p
h
]
〚
F
i
r
s
t
/
@
P
o
s
i
t
i
o
n
[
V
e
r
t
e
x
O
u
t
D
e
g
r
e
e
[
s
t
a
t
e
s
G
r
a
p
h
]
,
0
]
〛
}
]
t
i
m
e
I
n
v
a
r
i
a
n
t
Q
[
r
u
l
e
s
:
{
_
_
R
u
l
e
}
,
i
n
i
t
i
a
l
:
{
{
_
I
n
t
e
g
e
r
.
.
}
.
.
.
}
,
s
t
e
p
s
_
I
n
t
e
g
e
r
,
n
o
n
T
r
i
v
i
a
l
O
n
l
y
_
:
F
a
l
s
e
]
:
=
M
o
d
u
l
e
[
{
r
e
v
e
r
s
e
R
u
l
e
s
,
f
i
n
a
l
S
t
a
t
e
s
,
r
e
v
e
r
s
e
I
n
i
t
,
f
o
r
w
a
r
d
S
t
a
t
e
s
C
o
u
n
t
,
b
a
c
k
w
a
r
d
S
t
a
t
e
C
o
u
n
t
}
,
r
e
v
e
r
s
e
R
u
l
e
s
=
R
e
v
e
r
s
e
/
@
r
u
l
e
s
;
{
f
o
r
w
a
r
d
S
t
a
t
e
s
C
o
u
n
t
,
f
i
n
a
l
S
t
a
t
e
s
}
=
s
t
a
t
e
s
C
o
u
n
t
A
n
d
T
e
r
m
i
n
a
l
S
t
a
t
e
s
[
r
u
l
e
s
,
{
i
n
i
t
i
a
l
}
,
s
t
e
p
s
]
;
{
b
a
c
k
w
a
r
d
S
t
a
t
e
C
o
u
n
t
,
r
e
v
e
r
s
e
I
n
i
t
}
=
s
t
a
t
e
s
C
o
u
n
t
A
n
d
T
e
r
m
i
n
a
l
S
t
a
t
e
s
[
r
e
v
e
r
s
e
R
u
l
e
s
,
f
i
n
a
l
S
t
a
t
e
s
,
s
t
e
p
s
]
;
(
r
e
v
e
r
s
e
I
n
i
t
=
=
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
r
u
l
e
s
,
{
i
n
i
t
i
a
l
}
,
0
]
〚
1
〛
)
&
&
(
!
n
o
n
T
r
i
v
i
a
l
O
n
l
y
|
|
f
o
r
w
a
r
d
S
t
a
t
e
s
C
o
u
n
t
>
(
s
t
e
p
s
+
1
)
)
]
c
h
e
c
k
T
[
i
_
,
s
t
e
p
s
_
:
2
,
t
i
m
e
C
o
n
s
t
r
a
i
n
t
S
e
c
_
:
1
0
,
n
o
n
T
r
i
v
i
a
l
O
n
l
y
_
:
F
a
l
s
e
]
:
=
{
n
a
m
e
s
〚
i
〛
,
T
i
m
e
C
o
n
s
t
r
a
i
n
e
d
[
t
i
m
e
I
n
v
a
r
i
a
n
t
Q
[
r
u
l
e
s
〚
i
〛
,
i
n
i
t
s
〚
i
〛
,
s
t
e
p
s
,
n
o
n
T
r
i
v
i
a
l
O
n
l
y
]
,
t
i
m
e
C
o
n
s
t
r
a
i
n
t
S
e
c
]
}
e
v
o
l
u
t
i
o
n
R
e
v
e
r
s
i
b
i
l
i
t
y
P
l
o
t
[
r
u
l
e
_
,
i
n
i
t
i
a
l
_
,
s
t
e
p
_
]
:
=
M
o
d
u
l
e
[
{
R
u
l
e
s
P
,
R
u
l
e
s
N
,
I
n
i
t
i
a
l
P
,
s
t
e
p
s
,
I
n
i
t
i
a
l
N
}
,
R
u
l
e
s
P
=
r
u
l
e
[
[
1
]
]
;
R
u
l
e
s
N
=
R
e
v
e
r
s
e
@
R
u
l
e
s
P
;
I
n
i
t
i
a
l
P
=
i
n
i
t
i
a
l
;
s
t
e
p
s
=
s
t
e
p
;
I
n
i
t
i
a
l
N
=
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
{
R
u
l
e
s
P
}
,
{
I
n
i
t
i
a
l
P
}
,
s
t
e
p
s
,
V
e
r
t
e
x
S
i
z
e
1
]
/
/
L
a
s
t
;
{
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
{
R
u
l
e
s
P
}
,
{
I
n
i
t
i
a
l
P
}
,
s
t
e
p
s
,
"
S
t
a
t
e
s
G
r
a
p
h
"
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
S
i
z
e
1
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
]
,
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
{
R
u
l
e
s
N
}
,
I
n
i
t
i
a
l
N
,
s
t
e
p
s
,
"
S
t
a
t
e
s
G
r
a
p
h
"
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
S
i
z
e
1
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
,
G
r
a
p
h
L
a
y
o
u
t
"
L
a
y
e
r
e
d
D
i
g
r
a
p
h
E
m
b
e
d
d
i
n
g
"
]
}
]
s
e
l
e
c
t
R
e
v
e
r
s
i
b
l
e
R
u
l
e
s
[
i
n
d
i
c
e
s
_
,
m
a
x
S
t
e
p
s
_
:
3
,
t
i
m
e
C
o
n
s
t
r
a
i
n
t
_
:
1
0
,
n
o
n
T
r
i
v
i
a
l
O
n
l
y
_
:
F
a
l
s
e
]
:
=
F
o
l
d
[
W
i
t
h
[
{
r
e
v
e
r
s
i
b
i
l
i
t
y
R
e
s
u
l
t
s
=
P
a
r
a
l
l
e
l
M
a
p
M
o
n
i
t
o
r
e
d
[
F
u
n
c
t
i
o
n
[
{
i
n
d
e
x
}
,
c
h
e
c
k
T
[
i
n
d
e
x
,
#
2
,
t
i
m
e
C
o
n
s
t
r
a
i
n
t
,
n
o
n
T
r
i
v
i
a
l
O
n
l
y
&
&
#
2
=
=
=
m
a
x
S
t
e
p
s
]
]
,
#
,
L
a
b
e
l
T
o
S
t
r
i
n
g
[
#
2
]
<
>
"
s
t
e
p
s
"
]
}
,
#
〚
F
i
r
s
t
/
@
P
o
s
i
t
i
o
n
[
r
e
v
e
r
s
i
b
i
l
i
t
y
R
e
s
u
l
t
s
,
{
_
,
T
r
u
e
|
$
A
b
o
r
t
e
d
}
]
〛
]
&
,
i
n
d
i
c
e
s
,
R
a
n
g
e
[
m
a
x
S
t
e
p
s
]
]
For practice, we divided the 947 rules into 10 groups to check with only one shown in the code. The multiway models reversible in three steps are:
"wm1167", "wm1194", "wm1362", "wm1491", "wm1594", "wm1637", "wm1653", "wm1743", "wm1885", "wm1888", "wm1941", "wm1956", "wm1978", "wm1979", "wm2139", "wm2166", "wm225", "wm2254", "wm2374", "wm24528", "wm2488", "wm2738", "wm2818", "wm2856", "wm3149", "wm3169", "wm3262", "wm3322", "wm3568", "wm3636", "wm3647", "wm3656", "wm3673", "wm3693", "wm3728", "wm3765", "wm37684", "wm3777", "wm3926", "wm3973", "wm4187", "wm4328", "wm4354", "wm4423", "wm4426", "wm4525", "wm4567", "wm4635", "wm4768", "wm4826", "wm48637", "wm5121", "wm5324", "wm5425", "wm5446", "wm5637", "wm5822", "wm6146", "wm65529", "wm6612", "wm6612i47", "wm6649", "wm6722", "wm6817", "wm6835", "wm686", "wm6967", "wm7145", "wm7157", "wm7232", "wm7357", "wm7358", "wm7396", "wm7581", "wm7612", "wm7641", "wm7742", "wm7834", "wm7862", "wm8151", "wm8267", "wm8269", "wm8287", "wm8327", "wm83678", "wm83678i245", "wm8424", "wm8441", "wm8465", "wm8594", "wm8619", "wm8665", "wm8842", "wm8996", "wm9188", "wm9225", "wm9284", "wm9424", "wm94454", "wm9536", "wm9623", "wm9651", "wm9659", "wm9676", "wm9797", "wm9922", "wm9939"
◼
Here are state graphs of several highly non-trivial reversible rules:
"
w
m
1
1
9
4
"
,
,
,
"
w
m
1
6
3
7
"
,
,
,
"
w
m
1
8
8
8
"
,
,
,
"
w
m
6
6
1
2
i
4
7
"
,
,
Note that we only checked the models reversible after 3 steps, though the number of the non-trivial reversible rules varies slightly when setting the step to four.
These are the models we didn’t evaluate, they all corresponds to complex rules and we can’t rigidly exclude the possibility.
{"wm2224", "wm1527", "wm18953i625", "wm26268i826", "wm2277i63", "wm28827i826", "wm32583", "wm24459", "wm2821", "wm3655i129", "wm31775i826", "wm37269i826", "wm49989i826", "wm54817", "wm66442", "wm53835i826", "wm61316", "wm67114", "wm66442i625", "wm67114i625", "wm79446", "wm76398", "wm74621i826", "wm83388", "wm79446i625", "wm76398i544", "wm7523", "wm83388i625", "wm99198"}
◼
In conclusion, it is surprising to see only about 10 percent of the rules have the reversibility, suggesting it is pure coincidence that our fundamental interactions are reversible. As we can see later, the discrete symmetry provides very strong constrains on the rules that could finally leads to our universe.
C & P symmetry
Example 1
As introduced before, we can construct some stable unitary structures and regard them as the label of the orientation of the space. The unitary structures are just like particles, and their chirality conjugation might correspond to anti-particles. This is the initial condition of example1, where the single-edge triangle is clockwise and the double-edge triangle is anti-clockwise.
G
r
a
p
h
3
D
[
{
2
1
,
3
2
,
1
3
,
1
4
,
2
4
,
2
5
,
3
5
,
3
6
,
1
6
,
4
5
,
5
6
,
6
4
,
4
5
,
5
6
,
6
4
}
]
I
n
[
]
:
=
O
u
t
[
]
=
With the following update rules, we can get a fractal tree. In these structures, we define the single-edge triangle as particle and get the chirality of space by comparing the helicity of the double-edge and single-edge triangles. So, we can get C and P transforms individually.
Original Process
I
n
i
t
i
a
l
=
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
2
,
5
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
1
,
6
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
}
;
R
u
l
e
s
=
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
}
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
2
,
5
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
1
,
6
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
}
;
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
,
I
n
i
t
i
a
l
,
5
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
1
7
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
1
]
I
n
[
]
:
=
,
,
,
,
,
O
u
t
[
]
=
Charge Conjugate
I
n
i
t
i
a
l
=
{
{
2
,
1
}
,
{
3
,
2
}
,
{
1
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
2
,
5
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
1
,
6
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
}
;
R
u
l
e
s
=
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
}
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
2
,
5
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
1
,
6
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
}
;
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
,
I
n
i
t
i
a
l
,
5
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
1
7
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
1
]
I
n
[
]
:
=
,
,
,
,
,
O
u
t
[
]
=
Parity
I
n
i
t
i
a
l
=
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
2
,
5
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
1
,
6
}
,
{
5
,
4
}
,
{
6
,
5
}
,
{
4
,
6
}
,
{
5
,
4
}
,
{
6
,
5
}
,
{
4
,
6
}
}
;
R
u
l
e
s
=
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
}
{
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
1
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
2
,
5
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
1
,
6
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
,
{
4
,
5
}
,
{
5
,
6
}
,
{
6
,
4
}
}
;
W
o
l
f
r
a
m
M
o
d
e
l
[
R
u
l
e
s
,
I
n
i
t
i
a
l
,
5
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
1
7
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
1
]
I
n
[
]
:
=
,
,
,
,
,
O
u
t
[
]
=
It is worth mentioning that we just get the parity by naively reversing the direction of the edges. However, a general case should be more complex. For example, when the total number of arrows flowing into a vertex is not equal to that flowing out, we can get completely different structures.
Example 2
This is another example, which might be more clear than the previous 3D case. Our background is decided by how we define the particles and the anti-particles, which gives the orientation of our space. The triple self-loop is just to label the zero point of the space, which shows the arrow is moving. We can reverse the coordinate as parity transform, which lead to reversing the arrow’s direction and its velocity. It’s worth to point out that we need to keep the background invariant unless doing C transform, which changes its direction.
Normal Process
b
a
c
k
g
r
o
u
n
d
=
{
{
0
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
4
}
,
{
4
,
5
}
,
{
5
,
5
,
5
}
,
{
5
,
6
}
,
{
6
,
7
}
,
{
7
,
8
}
,
{
8
,
9
}
,
{
9
,
0
}
}
;
s
t
r
u
=
M
o
d
[
{
1
,
2
}
,
1
0
]
;
s
t
r
u
m
o
v
e
=
M
o
d
[
{
2
,
3
}
,
1
0
]
;
i
n
i
t
i
a
l
=
A
p
p
e
n
d
[
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
]
;
s
t
a
r
t
=
M
i
n
[
s
t
r
u
,
s
t
r
u
m
o
v
e
]
;
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
=
{
M
o
d
[
{
s
t
a
r
t
,
s
t
a
r
t
+
1
}
,
1
0
]
,
M
o
d
[
{
s
t
a
r
t
+
1
,
s
t
a
r
t
+
2
}
,
1
0
]
}
;
r
u
l
e
s
=
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
m
o
v
e
]
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
,
i
n
i
t
i
a
l
,
1
0
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
Parity
s
t
r
u
P
=
M
o
d
[
-
{
1
,
2
}
,
1
0
]
;
s
t
r
u
m
o
v
e
P
=
M
o
d
[
-
{
2
,
3
}
,
1
0
]
;
i
n
i
t
i
a
l
P
=
A
p
p
e
n
d
[
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
P
]
;
s
t
a
r
t
P
=
M
i
n
[
s
t
r
u
P
,
s
t
r
u
m
o
v
e
P
]
;
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
P
=
{
M
o
d
[
{
s
t
a
r
t
P
,
s
t
a
r
t
P
+
1
}
,
1
0
]
,
M
o
d
[
{
s
t
a
r
t
P
+
1
,
s
t
a
r
t
P
+
2
}
,
1
0
]
}
;
r
u
l
e
s
P
=
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
P
,
s
t
r
u
P
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
P
,
s
t
r
u
m
o
v
e
P
]
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
P
,
i
n
i
t
i
a
l
P
,
1
0
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
Charge Conjugate
b
a
c
k
g
r
o
u
n
d
C
=
R
e
v
e
r
s
e
/
@
{
{
0
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
4
}
,
{
4
,
5
}
,
{
5
,
5
,
5
}
,
{
5
,
6
}
,
{
6
,
7
}
,
{
7
,
8
}
,
{
8
,
9
}
,
{
9
,
0
}
}
;
i
n
i
t
i
a
l
C
=
A
p
p
e
n
d
[
b
a
c
k
g
r
o
u
n
d
C
,
s
t
r
u
]
;
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
=
R
e
v
e
r
s
e
/
@
{
M
o
d
[
{
s
t
a
r
t
,
s
t
a
r
t
+
1
}
,
1
0
]
,
M
o
d
[
{
s
t
a
r
t
+
1
,
s
t
a
r
t
+
2
}
,
1
0
]
}
;
r
u
l
e
s
C
=
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
,
s
t
r
u
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
,
s
t
r
u
m
o
v
e
]
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
C
,
i
n
i
t
i
a
l
C
,
1
0
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
Combined symmetry
P violation and CP conservation
When the unitary structures interact with the spatial structures, the former evolution process will be destroyed. And we can adjust the evolution rules so that it will only happen in space with certain chirality, which means that the parity symmetry is broken. Here is the example, in which the P-transformed system behaves in a different way. The other definitions are the sames as example2 in the last section.
Normal process
r
u
l
e
s
2
=
{
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
m
o
v
e
]
,
{
{
a
,
b
}
,
{
b
,
a
}
}
{
{
a
,
c
}
,
{
c
,
a
}
,
{
c
,
b
}
}
}
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
2
,
i
n
i
t
i
a
l
,
1
0
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
Parity Violation
r
u
l
e
s
2
P
=
{
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
P
,
s
t
r
u
P
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
P
,
s
t
r
u
m
o
v
e
P
]
,
{
{
a
,
b
}
,
{
b
,
a
}
}
{
{
a
,
c
}
,
{
c
,
a
}
,
{
c
,
b
}
}
}
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
2
P
,
i
n
i
t
i
a
l
P
,
1
0
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
We can see that as the arrow interact with background, the circle is growing, implying parity violation. As follows, if we reverse both the background label and the spatial chirality structure, our hypergraph stays invariant. It gives a strong implication of the CP conservation in conventional physics framework. Just because our space with finite dimension can always be observed in a higher dimension, we can get the conclusion that CP is just an identity transformation.
CP Conservation
i
n
i
t
i
a
l
C
P
=
A
p
p
e
n
d
[
b
a
c
k
g
r
o
u
n
d
C
,
s
t
r
u
P
]
;
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
P
=
R
e
v
e
r
s
e
/
@
{
M
o
d
[
{
s
t
a
r
t
P
,
s
t
a
r
t
P
+
1
}
,
1
0
]
,
M
o
d
[
{
s
t
a
r
t
P
+
1
,
s
t
a
r
t
P
+
2
}
,
1
0
]
}
;
r
u
l
e
s
2
C
P
=
{
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
P
,
s
t
r
u
P
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
P
,
s
t
r
u
m
o
v
e
P
]
,
{
{
a
,
b
}
,
{
b
,
a
}
}
{
{
a
,
c
}
,
{
c
,
a
}
,
{
c
,
b
}
}
}
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
2
C
P
,
i
n
i
t
i
a
l
C
P
,
1
0
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
CP Broken
However, in Standard Model, CP symmetry is still slightly broken, which means that the particles and anti-particles are not enough to label the chirality of our space. So, we need to add higher order background and interaction rules.
Normal Process
b
a
c
k
g
r
o
u
n
d
3
=
{
{
0
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
4
}
,
{
4
,
5
}
,
{
5
,
5
,
5
,
5
}
,
{
5
,
6
}
,
{
6
,
6
,
6
}
,
{
6
,
7
}
,
{
7
,
8
}
,
{
8
,
9
}
,
{
9
,
0
}
}
;
i
n
i
t
i
a
l
3
=
A
p
p
e
n
d
[
b
a
c
k
g
r
o
u
n
d
3
,
s
t
r
u
]
;
r
u
l
e
s
3
=
{
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
m
o
v
e
]
,
{
{
a
,
a
,
a
}
,
{
a
,
b
}
,
{
a
,
b
}
,
{
b
,
b
,
b
,
b
}
}
{
{
a
,
a
,
a
}
,
{
b
,
a
}
,
{
b
,
a
}
,
{
b
,
b
,
b
,
b
}
,
{
a
,
c
}
,
{
c
,
b
}
}
}
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
3
,
i
n
i
t
i
a
l
3
,
1
0
,
"
E
v
e
n
t
O
r
d
e
r
i
n
g
F
u
n
c
t
i
o
n
"
{
"
R
e
v
e
r
s
e
R
u
l
e
I
n
d
e
x
"
,
"
L
e
a
s
t
R
e
c
e
n
t
E
d
g
e
"
,
"
R
u
l
e
O
r
d
e
r
i
n
g
"
}
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
CP Broken
b
a
c
k
g
r
o
u
n
d
3
C
=
R
e
v
e
r
s
e
/
@
{
{
0
,
1
}
,
{
1
,
2
}
,
{
2
,
3
}
,
{
3
,
4
}
,
{
4
,
5
}
,
{
5
,
5
,
5
,
5
}
,
{
5
,
6
}
,
{
6
,
6
,
6
}
,
{
6
,
7
}
,
{
7
,
8
}
,
{
8
,
9
}
,
{
9
,
0
}
}
;
i
n
i
t
i
a
l
3
C
P
=
A
p
p
e
n
d
[
b
a
c
k
g
r
o
u
n
d
3
C
,
s
t
r
u
P
]
;
r
u
l
e
s
3
C
P
=
{
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
P
,
s
t
r
u
P
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
C
P
,
s
t
r
u
m
o
v
e
P
]
,
{
{
a
,
a
,
a
}
,
{
a
,
b
}
,
{
a
,
b
}
,
{
b
,
b
,
b
,
b
}
}
{
{
a
,
a
,
a
}
,
{
b
,
a
}
,
{
b
,
a
}
,
{
b
,
b
,
b
,
b
}
,
{
a
,
c
}
,
{
c
,
b
}
}
}
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
3
C
P
,
i
n
i
t
i
a
l
3
C
P
,
1
0
,
"
E
v
e
n
t
O
r
d
e
r
i
n
g
F
u
n
c
t
i
o
n
"
{
"
R
e
v
e
r
s
e
R
u
l
e
I
n
d
e
x
"
,
"
L
e
a
s
t
R
e
c
e
n
t
E
d
g
e
"
,
"
R
u
l
e
O
r
d
e
r
i
n
g
"
}
]
[
"
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
,
I
m
a
g
e
S
i
z
e
9
0
,
"
A
r
r
o
w
h
e
a
d
L
e
n
g
t
h
"
0
.
3
]
I
n
[
]
:
=
,
,
,
,
,
,
,
,
,
,
O
u
t
[
]
=
As shown, such evolution will only happen under certain definition of particles and spatial parity, corresponding to CP violation.
CPT Transform
To get the CPT conservation, we can construct T broken rules4 to cancel the condition leading to CP broken.
Normal Process
r
u
l
e
s
4
=
{
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
]
A
p
p
e
n
d
[
r
u
l
e
s
b
a
c
k
g
r
o
u
n
d
,
s
t
r
u
m
o
v
e
]
,
{
{
a
,
a
,
a
}
,
{
a
,
b
}
,
{
a
,
b
}
,
{
b
,
b
,
b
,
b
}
}
{
{
a
,
a
,
a
}
,
{
b
,
a
}
,
{
b
,
a
}
,
{
b
,
b
,
b
,
b
}
,
{
a
,
c
}
,
{
c
,
b
}
}
,
{
{
a
,
a
,
a
}
,
{
b
,
a
}
,
{
b
,
a
}
,
{
b
,
b
,
b
,
b
}
,
{
a
,
c
}
,
{
c
,
b
}
}
{
{
a
,
a
,
a
}
,
{
a
,
b
}
,
{
a
,
b
}
,
{
b
,
b
,
b
,
b
}
}
,
{
{
c
,
c
,
c
,
c
,
c
}
}
{
{
c
,
c
,
c
,
c
}
}
}
;
I
n
[
]
:
=
W
o
l
f
r
a
m
M
o
d
e
l
[
r
u
l
e
s
4
,
i
n
i
t
i
a
l
3
,
1
0
,
"
E
v
e
n
t
O
r
d
e
r
i
n
g
F
u
n
c
t
i
o
n
"
{
"
R
e
v
e
r
s
e
R
u
l
e
I
n
d
e
x
"
,
"
L
e
a
s
t
R
e
c
e
n
t
E
d
g
e
"
,
"
R
u
l
e
O
r