WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Premier Service
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Wolfram Science
Physics
Graphics and Visualization
Wolfram Language
Wolfram Summer School
2
Jatin Kansal
[WSS20] Classify Growth Rates for Wolfram Models
Jatin Kansal, Minerva Schools at KGI
Posted
6 months ago
610 Views
|
0 Replies
|
2 Total Likes
Follow this post
|
Objective:
Wolfram Physics Models
are one of the newest and most promising
directions to explore the Fundamental Theory of Physics
. One of the properties of the models is their growth. Most of the models seem to
grow at exponential or linear scales
. The objective here is to formally classify the observed growth rates into different categories and try to find Wolfram Models with non-linear and non-exponential growth rates.
Results:
I ran Wolfram Models of various
signatures
and found only Linear and Exponential growth rates. These growth rates were not perfect and had some variations, but the overall growth rates fit almost perfectly with either linear or exponential models. A function called
WolframModelInterestingRules[]
was created to automatically filter out rules with “purely linear” and “purely exponential” growth rates.
As a first step to classify the growth rates, I decided to create a function which would remove all the “uninteresting” rules automatically and leave us with only a fraction of the original number of rules to check. Hence, I created the function WolframModelInterestingRules.
The function WolframModelInterestingRules
To have this function available in Wolfram, download and run the notebook available
here
.
This function filters out the Wolfram Models which:
1. Terminate at or before 3rd generation of the model.
2. Are disconnected at the 3rd generation of the model.
3. Show exactly linear growth for both the vertices and hyperedges, which I call “purely linear”.
4. Show exactly exponential growth for both the vertices and hyperedges, which I call “purely exponential”.
The models which show some distortion in their growth rates, or the models which show linear growth in one of either vertices or hyperedges and exponential in other are preserved.
The Input:
The WolframModelInterestingRules takes one mandatory input of the list of signatures that you would like to explore, and one optional input which specifies the type of output you want.
W
o
l
f
r
a
m
M
o
d
e
l
I
n
t
e
r
e
s
t
i
n
g
R
u
l
e
s
[
{
S
i
g
n
a
t
u
r
e
1
,
S
i
g
n
a
t
u
r
e
2
,
S
i
g
n
a
t
u
r
e
3
,
.
.
.
.
.
}
,
“
O
u
t
p
u
t
T
y
p
e
”
-
>
“
D
e
f
a
u
l
t
”
]
Inputting the signatures :
If given multiple signatures in the list, then the function runs them simultaneously as a configuration for multiple rules i.e. it will assume that these are signatures for simultaneous rules. It will therefore randomly pair rules with these signatures to form a set of rules to be run together.
Here’s an example of the types of rules this will generate and filter:
S
e
e
d
R
a
n
d
o
m
[
1
2
3
4
]
;
s
i
g
n
a
t
u
r
e
s
=
{
{
{
1
,
2
}
}
{
{
2
,
2
}
}
,
{
{
1
,
3
}
}
{
{
2
,
3
}
}
}
;
R
u
l
e
s
=
M
a
p
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
E
n
u
m
e
r
a
t
e
W
o
l
f
r
a
m
M
o
d
e
l
R
u
l
e
s
"
]
,
s
i
g
n
a
t
u
r
e
s
]
;
M
a
p
[
R
a
n
d
o
m
C
h
o
i
c
e
,
R
u
l
e
s
]
{
{
{
1
,
2
}
}
{
{
1
,
1
}
,
{
2
,
3
}
}
,
{
{
1
,
2
,
3
}
}
{
{
3
,
1
,
2
}
,
{
4
,
5
,
2
}
}
}
T
h
e
o
p
t
i
o
n
a
l
i
n
p
u
t
:
1
.
"
O
u
t
p
u
t
T
y
p
e
"
-
>
"
D
e
f
a
u
l
t
"
T
h
i
s
o
u
t
p
u
t
s
t
h
e
r
a
w
d
a
t
a
o
n
t
h
e
s
e
l
e
c
t
e
d
r
u
l
e
s
.
F
o
r
e
a
c
h
m
o
d
e
l
w
i
t
h
a
n
o
n
-
l
i
n
e
a
r
a
n
d
n
o
n
-
e
x
p
o
n
e
n
t
i
a
l
g
r
o
w
t
h
,
i
t
p
r
i
n
t
s
t
h
e
l
i
s
t
o
f
:
u
n
d
e
r
l
y
i
n
g
r
u
l
e
s
,
i
n
i
t
i
a
l
s
t
a
t
e
,
t
h
e
f
i
n
a
l
s
t
a
t
e
,
l
i
s
t
o
f
v
e
r
t
e
x
c
o
u
n
t
s
a
t
e
a
c
h
s
t
e
p
,
l
i
s
t
o
f
h
y
p
e
r
e
d
g
e
c
o
u
n
t
a
t
e
a
c
h
s
t
e
p
,
t
h
e
l
i
s
t
o
f
g
r
a
p
h
d
i
a
m
e
t
e
r
a
t
e
a
c
h
s
t
e
p
,
a
n
d
w
h
e
t
h
e
r
t
h
e
h
y
p
e
r
g
r
a
p
h
i
s
s
t
i
l
l
c
o
n
n
e
c
t
e
d
a
t
1
0
t
h
g
e
n
e
r
a
t
i
o
n
.
H
e
r
e
’
s
a
n
e
x
a
m
p
l
e
o
u
t
p
u
t
f
o
r
o
n
e
m
o
d
e
l
(
t
h
e
o
u
t
p
u
t
f
o
r
f
i
n
a
l
s
t
a
t
e
i
s
s
u
p
p
r
e
s
s
e
d
t
o
a
v
o
i
d
c
l
u
t
t
e
r
i
n
g
t
h
e
o
u
t
p
u
t
h
e
r
e
.
I
t
w
i
l
l
w
o
r
k
i
n
a
c
t
u
a
l
c
o
d
e
)
:
e
x
a
m
p
l
e
=
W
o
l
f
r
a
m
M
o
d
e
l
I
n
t
e
r
e
s
t
i
n
g
R
u
l
e
s
[
{
{
{
1
,
2
}
}
{
{
2
,
2
}
}
}
]
;
e
x
a
m
p
l
e
[
[
1
]
]
[
[
1
]
]
{
{
{
1
,
1
}
}
{
{
1
,
1
}
,
{
1
,
1
}
}
,
{
{
1
,
1
}
}
,
N
u
l
l
,
{
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
1
}
,
{
1
,
2
,
4
,
8
,
1
6
,
3
2
,
6
4
,
1
2
8
,
2
5
6
,
5
1
2
,
1
0
2
4
}
,
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
}
,
T
r
u
e
}
2
.
"
O
u
t
p
u
t
T
y
p
e
"
-
>
"
V
i
s
u
a
l
i
z
e
"
T
h
i
s
o
u
t
p
u
t
s
t
h
e
v
i
s
u
a
l
i
z
a
t
i
o
n
f
o
r
t
h
e
d
a
t
a
p
r
o
d
u
c
e
d
i
n
"
D
e
f
a
u
l
t
"
.
F
o
r
e
a
c
h
s
e
l
e
c
t
e
d
m
o
d
e
l
,
i
t
p
r
i
n
t
s
t
h
e
R
u
l
e
P
l
o
t
f
o
r
u
n
d
e
r
l
y
i
n
g
r
u
l
e
s
,
t
h
e
p
l
o
t
o
f
I
n
i
t
i
a
l
S
t
a
t
e
,
t
h
e
p
l
o
t
o
f
F
i
n
a
l
S
t
a
t
e
,
l
i
n
e
p
l
o
t
o
f
v
e
r
t
e
x
c
o
u
n
t
s
,
l
i
n
e
p
l
o
t
o
f
e
d
g
e
c
o
u
n
t
s
,
a
n
d
l
i
n
e
p
l
o
t
o
f
t
h
e
d
i
a
m
e
t
e
r
a
t
e
a
c
h
s
t
e
p
.
H
e
r
e
’
s
a
n
e
x
a
m
p
l
e
o
u
t
p
u
t
f
o
r
o
n
e
m
o
d
e
l
:
e
x
a
m
p
l
e
2
=
W
o
l
f
r
a
m
M
o
d
e
l
I
n
t
e
r
e
s
t
i
n
g
R
u
l
e
s
[
{
{
{
1
,
2
}
}
{
{
2
,
2
}
}
}
,
"
O
u
t
p
u
t
T
y
p
e
"
"
V
i
s
u
a
l
i
z
e
"
]
;
R
a
s
t
e
r
i
z
e
[
e
x
a
m
p
l
e
2
[
[
1
]
]
[
[
3
]
]
]
3
.
"
O
u
t
p
u
t
T
y
p
e
"
-
>
"
C
l
a
s
s
i
f
y
"
T
h
i
s
c
l
a
s
s
i
f
i
e
s
a
l
l
t
h
e
m
o
d
e
l
s
(
i
n
c
l
u
d
i
n
g
t
h
e
o
n
e
s
t
h
a
t
a
r
e
f
i
l
t
e
r
e
d
o
u
t
i
n
o
t
h
e
r
o
u
t
p
u
t
t
y
p
e
s
)
i
n
t
o
3
c
a
t
e
g
o
r
i
e
s
:
L
i
n
e
a
r
,
E
x
p
o
n
e
n
t
i
a
l
,
a
n
d
N
e
i
t
h
e
r
.
I
t
r
e
t
u
r
n
s
a
n
a
s
s
o
c
i
a
t
i
o
n
o
f
t
h
e
s
e
3
t
y
p
e
s
a
s
K
e
y
s
a
n
d
t
h
e
l
i
s
t
o
f
u
n
d
e
r
l
y
i
n
g
r
u
l
e
s
a
n
d
i
n
i
t
i
a
l
s
t
a
t
e
a
s
t
h
e
v
a
l
u
e
s
.
H
e
r
e
’
s
a
n
e
x
a
m
p
l
e
o
u
t
p
u
t
:
e
x
a
m
p
l
e
3
=
W
o
l
f
r
a
m
M
o
d
e
l
I
n
t
e
r
e
s
t
i
n
g
R
u
l
e
s
[
{
{
{
1
,
2
}
}
{
{
2
,
2
}
}
}
,
"
O
u
t
p
u
t
T
y
p
e
"
"
C
l
a
s
s
i
f
y
"
]
"
L
i
n
e
a
r
"
{
{
{
1
,
1
}
}
{
{
1
,
1
}
,
{
1
,
2
}
}
,
{
{
1
,
1
}
}
}
{
{
{
1
,
1
}
}
{
{
1
,
1
}
,
{
2
,
1
}
}
,
{
{
1
,
1
}
}
}
{
{
{
1
,
1
}
}
{
{
2
,
2
}
,
{
1
,
2
}
}
,
{
{
1
,
1
}
}
}
{
{
{
1
,
1
}
}
{
{
2
,
2
}
,
{
2
,
1
}
}
,
{
{
1
,
1
}
}
}
,
"
E
x
p
o
n
e
n
t
i
a
l
"
{
{
{
1
,
2
}
}
{
{
1
,
2
}
,
{
1
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
2
}
,
{
2
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
1
}
,
{
1
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
1
}
,
{
2
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
2
}
,
{
3
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
1
}
,
{
3
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
3
}
,
{
2
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
3
}
,
{
3
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
3
}
,
{
3
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
3
}
,
{
1
,
4
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
3
,
1
}
,
{
1
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
3
,
1
}
,
{
3
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
3
,
2
}
,
{
2
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
3
,
2
}
,
{
4
,
2
}
}
,
{
{
1
,
2
}
}
}
,
"
N
e
i
t
h
e
r
"
{
{
{
1
,
1
}
}
{
{
1
,
1
}
,
{
1
,
1
}
}
,
{
{
1
,
1
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
1
}
,
{
1
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
1
}
,
{
1
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
1
}
,
{
2
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
2
}
,
{
1
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
2
}
,
{
2
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
1
}
,
{
2
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
2
}
,
{
1
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
2
}
,
{
2
,
1
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
2
}
,
{
2
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
1
}
,
{
1
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
2
,
2
}
,
{
3
,
2
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
1
,
3
}
,
{
1
,
3
}
}
,
{
{
1
,
2
}
}
}
{
{
{
1
,
2
}
}
{
{
3
,
2
}
,
{
3
,
2
}
}
,
{
{
1
,
2
}
}
}
4
.
“
O
u
t
p
u
t
T
y
p
e
”
-
>
“
F
e
a
t
u
r
e
S
p
a
c
e
P
l
o
t
”
T
h
i
s
o
u
t
p
u
t
s
a
F
e
a
t
u
r
e
S
p
a
c
e
P
l
o
t
o
f
t
h
e
f
i
n
a
l
s
t
a
t
e
s
o
f
a
l
l
t
h
e
s
e
l
e
c
t
e
d
m
o
d
e
l
s
.
T
h
i
s
i
s
v
e
r
y
h
e
l
p
f
u
l
t
o
j
u
s
t
l
o
o
k
a
t
e
v
e
r
y
t
h
i
n
g
i
n
o
n
e
p
l
a
c
e
a
n
d
i
d
e
n
t
i
f
y
a
n
y
m
o
d
e
l
s
w
h
i
c
h
a
r
e
d
i
f
f
e
r
e
n
t
t
h
a
n
o
t
h
e
r
s
.
H
e
r
e
i
s
a
n
e
x
a
m
p
l
e
o
f
t
h
e
o
u
t
p
u
t
:
e
x
a
m
p
l
e
4
=
W
o
l
f
r
a
m
M
o
d
e
l
I
n
t
e
r
e
s
t
i
n
g
R
u
l
e
s
[
{
{
{
1
,
2
}
}
{
{
2
,
2
}
}
}
,
"
O
u
t
p
u
t
T
y
p
e
"
"
F
e
a
t
u
r
e
S
p
a
c
e
P
l
o
t
"
]
;
R
a
s
t
e
r
i
z
e
[
e
x
a
m
p
l
e
4
]
Classification of observed growth rates
I observed multiple forms of Linear and Exponential growth, but nothing apart from these types of growths. Some of the growths are predictable, others not so much. In general, if the rules or sets of rules which preserve the number of points of application of rules, then the growth rate would be linear. On the other hand, if the number of points of applications of rules increase with each step, then we get an exponential growth. If the number of points of applications of rules decrease with each step, then we get an exponential decay (which I will not discuss here).
Linear
1. Exactly linear growth: This is the growth of the form ‘ax + b’. Consider the following example which preserves the number of points where the rule can be applied. The growth rate for this Wolfram Model is perfectly linear.
r
u
l
e
=
{
{
1
,
2
}
}
{
{
1
,
2
}
,
{
1
,
2
,
3
}
}
;
m
o
d
e
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
r
u
l
e
,
{
{
1
,
2
}
}
,
1
0
,
{
"
V
e
r
t
e
x
C
o
u
n
t
L
i
s
t
"
,
"
E
d
g
e
C
o
u
n
t
L
i
s
t
"
}
]
;
m
o
d
e
l
f
i
t
=
T
a
b
l
e
[
L
i
n
e
a
r
M
o
d
e
l
F
i
t
[
i
,
x
,
x
]
,
{
i
,
m
o
d
e
l
}
]
;
v
e
r
t
e
x
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
[
1
]
]
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
[
[
1
]
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
v
e
r
t
i
c
e
s
"
]
]
e
d
g
e
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
[
2
]
]
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
[
[
2
]
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
e
d
g
e
s
"
]
]
2. A small distortion in the beginning and then reaches a linear growth: Here, most of the growth is linear, just the first step shows a small disturbance. For example:
r
u
l
e
=
{
{
1
,
2
}
,
{
1
,
3
}
}
{
{
1
,
1
}
,
{
1
,
1
}
,
{
4
,
1
}
}
;
m
o
d
e
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
r
u
l
e
,
{
{
1
,
2
}
,
{
1
,
3
}
}
,
1
0
,
{
"
V
e
r
t
e
x
C
o
u
n
t
L
i
s
t
"
,
"
E
d
g
e
C
o
u
n
t
L
i
s
t
"
}
]
;
m
o
d
e
l
f
i
t
=
T
a
b
l
e
[
L
i
n
e
a
r
M
o
d
e
l
F
i
t
[
i
,
x
,
x
]
,
{
i
,
m
o
d
e
l
}
]
;
v
e
r
t
e
x
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
[
1
]
]
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
L
i
n
e
P
l
o
t
[
m
o
d
e
l
[
[
1
]
]
,
C
o
l
o
r
F
u
n
c
t
i
o
n
H
u
e
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
[
[
1
]
]
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
v
e
r
t
i
c
e
s
"
]
3. Step growth: Here, the overall growth rate is still linear, but it happens in steps. For example, the vertex growth rate for the following model.
r
u
l
e
=
{
{
1
,
1
}
,
{
1
,
2
}
}
{
{
1
,
1
}
,
{
1
,
3
}
,
{
1
,
3
}
}
;
m
o
d
e
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
r
u
l
e
,
{
{
1
,
1
}
,
{
1
,
2
}
}
,
1
0
,
{
"
V
e
r
t
e
x
C
o
u
n
t
L
i
s
t
"
,
"
E
d
g
e
C
o
u
n
t
L
i
s
t
"
}
]
;
m
o
d
e
l
f
i
t
=
T
a
b
l
e
[
L
i
n
e
a
r
M
o
d
e
l
F
i
t
[
i
,
x
,
x
]
,
{
i
,
m
o
d
e
l
}
]
;
v
e
r
t
e
x
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
[
1
]
]
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
L
i
n
e
P
l
o
t
[
m
o
d
e
l
[
[
1
]
]
,
C
o
l
o
r
F
u
n
c
t
i
o
n
H
u
e
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
[
[
1
]
]
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
v
e
r
t
i
c
e
s
"
]
Exponential
1. Integer base growth rate: This is an exponential growth where the base of the exponent is an integer. The following example shows a growth rate with the base of 2 for vertices.
r
u
l
e
=
{
{
1
}
}
{
{
2
,
1
}
,
{
2
}
,
{
2
}
}
;
m
o
d
e
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
r
u
l
e
,
{
{
1
}
}
,
1
0
,
"
V
e
r
t
e
x
C
o
u
n
t
L
i
s
t
"
]
;
m
o
d
e
l
f
i
t
=
N
o
n
l
i
n
e
a
r
M
o
d
e
l
F
i
t
[
m
o
d
e
l
,
a
^
(
x
-
1
)
,
{
a
}
,
x
]
v
e
r
t
e
x
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
v
e
r
t
i
c
e
s
"
]
F
i
t
t
e
d
M
o
d
e
l
-
1
+
x
2
.
2. Non-integer base growth rate: This is an exponential growth where the base of the exponent is not integer. Consider the example below where both the vertices and edges grow exponentially but the base and the constant multiplied by x are not integers.
r
u
l
e
=
{
{
2
,
1
}
,
{
3
,
1
}
}
{
{
2
,
1
}
,
{
3
,
1
}
,
{
4
,
1
}
}
;
m
o
d
e
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
r
u
l
e
,
{
{
2
,
1
}
,
{
3
,
1
}
}
,
1
0
,
{
"
V
e
r
t
e
x
C
o
u
n
t
L
i
s
t
"
,
"
E
d
g
e
C
o
u
n
t
L
i
s
t
"
}
]
;
m
o
d
e
l
f
i
t
=
T
a
b
l
e
[
N
o
n
l
i
n
e
a
r
M
o
d
e
l
F
i
t
[
i
,
a
^
(
b
*
x
)
,
{
a
,
b
}
,
x
]
,
{
i
,
m
o
d
e
l
}
]
v
e
r
t
e
x
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
[
1
]
]
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
[
[
1
]
]
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
v
e
r
t
i
c
e
s
"
]
e
d
g
e
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
[
2
]
]
[
x
]
,
{
x
,
1
,
1
0
}
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
[
[
2
]
]
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
e
d
g
e
s
"
]
F
i
t
t
e
d
M
o
d
e
l
0
.
9
6
8
5
3
9
3
0
9
9
7
2
4
5
1
3
`
x
1
.
5
3
5
3
3
9
8
1
7
0
6
2
9
7
2
2
`
,
F
i
t
t
e
d
M
o
d
e
l
0
.
9
7
8
9
1
4
7
0
7
4
9
4
1
9
5
4
`
x
1
.
5
2
6
0
6
0
8
9
7
3
9
6
6
0
9
7
`
3. Step growth: Just like the linear step growth, there is also exponential step growth. Here, the overall growth is exponential, but it happens in steps.
r
u
l
e
=
{
{
1
,
2
}
,
{
2
,
3
}
}
{
{
3
,
2
}
,
{
3
,
2
}
,
{
4
,
3
}
}
;
m
o
d
e
l
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
r
u
l
e
,
{
{
1
,
2
}
,
{
2
,
3
}
}
,
2
0
,
"
V
e
r
t
e
x
C
o
u
n
t
L
i
s
t
"
]
m
o
d
e
l
f
i
t
=
N
o
n
l
i
n
e
a
r
M
o
d
e
l
F
i
t
[
m
o
d
e
l
,
a
^
(
b
*
x
)
,
{
a
,
b
}
,
x
]
v
e
r
t
e
x
f
i
t
=
S
h
o
w
[
P
l
o
t
[
m
o
d
e
l
f
i
t
[
x
]
,
{
x
,
1
,
2
0
}
]
,
L
i
s
t
L
i
n
e
P
l
o
t
[
m
o
d
e
l
,
C
o
l
o
r
F
u
n
c
t
i
o
n
H
u
e
]
,
L
i
s
t
P
l
o
t
[
m
o
d
e
l
]
,
P
l
o
t
L
a
b
e
l
"
G
r
o
w
t
h
R
a
t
e
f
o
r
v
e
r
t
i
c
e
s
"
]
F
i
t
t
e
d
M
o
d
e
l
1
.
6
2
4
2
6
0
8
8
2
4
8
0
4
1
2
8
`
x
1
.
2
0
3
7
8
8
6
2
9
6
6
2
7
8
3
5
`
Future Work
The growth rates for a model depend heavily on the rules and initial condition. So, the future work would include running WolframModelInterestingRules with larger and multiple rules. I have yet to experiment with more than 2 simultaneous rules.
Additionally, the WolframModelInterestingRules does not allow many of the options such as changing the initial condition or the event-ordering in case of multiple rules. Hence, future work will also include upgrading the WolframModelInterestingRules to have some of the options to change the Wolfram Model parameters.
The caveat in all this is the lack of computational power. The number of possible rules increase exponentially when increasing the signature. Hence, a personal computer is unable to run signatures bigger than arity 3.
Another future direction might be to explore the Branchial graphs in the Wolfram Models instead of the Spatial Hypergraphs I explored.
Code Repository
All the code and some of the outputs are available on the GitHub repository
here
.
Acknowledgements
This project of course could not have been complete without certain people. A huge thanks to Jack Heimrath who went through all the nitty-gritty details with me, Jesse Friedman who helped optimize WolframModelInterestingRules to its best. I would also like to thank Stephen Wolfram, Wolfram Research, and Wolfram Summer School for the opportunity to work on this project.
POSTED BY:
Jatin Kansal
Answer
Mark as an Answer
Reply
|
Flag
Reply to this discussion
in reply to
Add Notebook
Community posts can be styled and formatted using the
Markdown syntax
.
Tag limit exceeded
Note: Only the first five people you tag will receive an email notification; the other tagged names will appear as links to their profiles.
Publish anyway
Cancel
Reply Preview
Attachments
Remove
Add a file to this post
Follow this discussion
or
Discard
Group Abstract
Be respectful. Review our
Community Guidelines
to understand your role and responsibilities.
Community Terms of Use
Feedback
Enable JavaScript to interact with content and submit forms on Wolfram websites.
Learn how »