WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Premier Service
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Wolfram Science
Physics
Graphs and Networks
Wolfram Language
Wolfram Summer School
2
Yanal Marji
[WSS20] Wolfram Models as Discretization Methods for Numerical PDE Solver
Yanal Marji, Minerva Schools at KGI
Posted
6 months ago
1191 Views
|
0 Replies
|
2 Total Likes
Follow this post
|
I
n
[
]
:
=
Abstract: The Wolfram Models are a discrete spacetime formalism represented by hypergraphs and causal graphs generated by simple computational rules. Given that these models represent spacetime, they can readily be used as spatial and temporal discretizations for numerically computing Partial Differential Equations (PDEs), which can prove useful in cases where the discretizations are too computationally expensive or difficult to produce.
This project is a preliminary study on ways the hypergraphs with interesting limiting geometries can be converted into a mesh for solving PDEs.
When considering mathematical tools that are used in modelling, PDEs are arguably the most ubiquitous. However, they are incredibly difficult, if not impossible, to solve analytically, which forces us to turn to numerical algorithms to compute them.
Although there are various numerical methods used to solve PDEs, they usually come with their own set of challenges and limitations. When considering mesh-based methods specifically (i.e. finite difference or finite element methods), the construction of a mesh, particularly for domains with a complex geometry, is a computationally heavy task. Here, we look into the hypergraphs generated by the Wolfram models as possible discretizations or meshes that can be used directly by such methods. The primary advantage of this is, if the Wolfram Model effectively models spacetime, then these discretizations would save a large amount of computational effort in generating meshes used for PDEs that model physical phenomena.This is due to the fact that the Wolfram models are already discrete models, so they can be used as a “ready-made” tool to handle this.
This work aims to present a short demonstration of using the hypergraphs as a mesh for solving PDEs. Firstly, we start with the Poisson equation, a relatively easy equation to solve, and a given hypergraph generated from the Wolfram models. The hypergraph would then be converted into a graph and embedded into the Cartesian plane (to coordinatize it), and then be used to generate a mesh. The equation would then be solved using tools provided by Mathematica (i.e.NDSolve) on the given mesh. Secondly, we present a solution of the 2D Burgers' equation to demonstrate further the ability of these meshes to capture characteristics of some PDEs, such as the formation of shock waves.
The work starts by presenting one example of a hypergraph that can act as the spatial discretization for the system. Consider the following hypergraph:
g
1
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
x
,
y
,
y
}
,
{
z
,
x
,
u
}
}
{
{
y
,
v
,
y
}
,
{
y
,
z
,
v
}
,
{
u
,
v
,
v
}
}
,
{
{
0
,
0
,
0
}
,
{
0
,
0
,
0
}
}
,
1
0
0
0
,
"
F
i
n
a
l
S
t
a
t
e
"
]
G
1
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
P
l
o
t
"
]
[
g
1
]
I
n
[
]
:
=
{
{
2
,
0
,
3
}
,
{
4
,
1
,
5
}
,
{
5
,
3
,
6
}
,
{
6
,
3
,
7
}
,
{
8
,
7
,
9
}
,
{
9
,
7
,
1
0
}
,
{
1
0
,
6
,
1
1
}
,
{
1
1
,
5
,
1
2
}
,
{
1
3
,
1
2
,
1
4
}
,
{
1
4
,
1
2
,
1
5
}
,
{
1
5
,
1
1
,
1
6
}
,
⋯
9
8
0
⋯
,
{
9
9
5
,
9
9
6
,
9
9
5
}
,
{
9
9
5
,
9
8
1
,
9
9
6
}
,
{
9
9
6
,
9
9
7
,
9
9
6
}
,
{
9
9
6
,
9
8
0
,
9
9
7
}
,
{
9
9
7
,
9
9
8
,
9
9
7
}
,
{
9
9
7
,
9
7
9
,
9
9
8
}
,
{
9
9
8
,
9
9
9
,
9
9
8
}
,
{
9
9
8
,
9
7
8
,
9
9
9
}
,
{
9
9
9
,
1
0
0
0
,
9
9
9
}
,
{
9
9
9
,
9
7
7
,
1
0
0
0
}
,
{
9
7
7
,
1
0
0
0
,
1
0
0
0
}
}
l
a
r
g
e
o
u
t
p
u
t
s
h
o
w
l
e
s
s
s
h
o
w
m
o
r
e
s
h
o
w
a
l
l
s
e
t
s
i
z
e
l
i
m
i
t
.
.
.
O
u
t
[
]
=
O
u
t
[
]
=
In order for us to use this hypergraph, we need to convert it into a graph first before creating a mesh out of it. After it's converted into a graph, it's embedded onto the Cartesian plane and then scaled down to fit what would be a sensible domain for the Poisson equation. This would look like:
G
r
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
H
y
p
e
r
g
r
a
p
h
T
o
G
r
a
p
h
"
]
[
g
1
]
C
1
=
G
r
a
p
h
E
m
b
e
d
d
i
n
g
[
G
r
]
C
1
=
C
1
/
(
M
e
a
n
[
C
1
[
[
A
l
l
,
1
]
]
]
)
C
1
=
#
-
{
M
e
a
n
[
C
1
[
[
A
l
l
,
1
]
]
]
,
M
e
a
n
[
C
1
[
[
A
l
l
,
2
]
]
]
}
&
/
@
(
C
1
)
L
i
s
t
P
l
o
t
[
C
1
]
I
n
[
]
:
=
O
u
t
[
]
=
O
u
t
[
]
=
Now, the graph is ready to be converted into a mesh:
M
e
s
h
1
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
N
o
n
C
o
n
v
e
x
H
u
l
l
M
e
s
h
"
]
[
C
1
,
0
.
2
]
I
n
[
]
:
=
O
u
t
[
]
=
And now we have a mesh ready to be used!
The next step is to define the Poisson equation in Mathematica and use NDSolve to solve it.
Furthermore, with the solutions obtained from NDSolve, we assign those values to the vertices of the graph and code it with a temperature map. The final graph is colored according to a temperature map, so the warmer the color, the higher the value of the PDE is at that point.
C
l
e
a
r
A
l
l
[
x
]
;
C
l
e
a
r
A
l
l
[
y
]
o
p
=
-
L
a
p
l
a
c
i
a
n
[
u
[
x
,
y
]
,
{
x
,
y
}
]
-
5
B
n
d
r
y
=
D
i
r
i
c
h
l
e
t
C
o
n
d
i
t
i
o
n
[
u
[
x
,
y
]
=
=
1
,
x
≤
0
]
u
f
u
n
=
N
D
S
o
l
v
e
V
a
l
u
e
[
{
o
p
=
=
0
,
B
n
d
r
y
}
,
u
[
x
,
y
]
,
{
x
,
y
}
∈
M
e
s
h
1
]
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
=
{
}
F
o
r
[
i
=
1
,
i
<
V
e
r
t
e
x
C
o
u
n
t
[
G
r
]
+
1
,
i
+
+
,
x
=
C
1
[
[
i
]
]
[
[
1
]
]
;
y
=
C
1
[
[
i
]
]
[
[
2
]
]
;
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
=
{
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
,
u
f
u
n
}
]
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
=
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
/
/
F
l
a
t
t
e
n
W
G
r
a
p
h
1
=
G
r
a
p
h
[
G
r
,
V
e
r
t
e
x
W
e
i
g
h
t
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
]
S
e
t
P
r
o
p
e
r
t
y
[
W
G
r
a
p
h
1
,
{
V
e
r
t
e
x
S
t
y
l
e
T
h
r
e
a
d
[
V
e
r
t
e
x
L
i
s
t
[
W
G
r
a
p
h
1
]
(
C
o
l
o
r
D
a
t
a
[
"
T
e
m
p
e
r
a
t
u
r
e
M
a
p
"
]
/
@
R
e
s
c
a
l
e
[
V
e
r
t
e
x
W
e
i
g
h
t
V
a
l
u
e
s
]
)
]
}
]
I
n
[
]
:
=
And this is the final result!
Now that we've established a procedure, we can extend it a bit further. Right now, we're just solving the PDE on a static hypergraph, meaning it's one single evolution. The next step would be generalizing the procedure into a function and then iteratively applying it over the hypergraph as it evolves while we apply the computational rules for the Wolfram models.
H
y
p
e
r
g
r
a
p
h
P
D
E
S
o
l
v
e
r
[
g
_
,
o
p
_
,
b
n
d
r
y
_
]
:
=
M
o
d
u
l
e
[
{
G
,
C
,
S
C
,
M
e
s
h
,
u
f
u
n
,
V
V
a
l
,
W
G
r
a
p
h
}
,
G
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
H
y
p
e
r
g
r
a
p
h
T
o
G
r
a
p
h
"
]
[
g
]
;
C
=
G
r
a
p
h
E
m
b
e
d
d
i
n
g
[
G
]
;
S
C
=
#
-
{
M
e
a
n
[
C
[
[
A
l
l
,
1
]
]
]
,
M
e
a
n
[
C
[
[
A
l
l
,
2
]
]
]
}
&
/
@
(
C
)
;
S
C
=
S
C
/
(
M
e
a
n
[
C
[
[
A
l
l
,
1
]
]
]
)
;
M
e
s
h
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
N
o
n
C
o
n
v
e
x
H
u
l
l
M
e
s
h
"
]
[
S
C
,
0
.
2
]
;
C
l
e
a
r
A
l
l
[
x
]
;
C
l
e
a
r
A
l
l
[
y
]
;
u
f
u
n
=
N
D
S
o
l
v
e
V
a
l
u
e
[
{
o
p
=
=
0
,
b
n
d
r
y
}
,
u
[
x
,
y
]
,
{
x
,
y
}
∈
M
e
s
h
]
;
V
V
a
l
=
{
}
;
F
o
r
[
i
=
1
,
i
<
V
e
r
t
e
x
C
o
u
n
t
[
G
]
+
1
,
i
+
+
,
x
=
S
C
[
[
i
]
]
[
[
1
]
]
;
y
=
S
C
[
[
i
]
]
[
[
2
]
]
;
V
V
a
l
=
{
V
V
a
l
,
u
f
u
n
}
]
;
V
V
a
l
=
V
V
a
l
/
/
F
l
a
t
t
e
n
;
W
G
r
a
p
h
=
G
r
a
p
h
[
G
,
V
e
r
t
e
x
W
e
i
g
h
t
V
V
a
l
]
;
S
e
t
P
r
o
p
e
r
t
y
[
W
G
r
a
p
h
,
{
V
e
r
t
e
x
S
i
z
e
4
,
V
e
r
t
e
x
S
t
y
l
e
T
h
r
e
a
d
[
V
e
r
t
e
x
L
i
s
t
[
W
G
r
a
p
h
]
(
C
o
l
o
r
D
a
t
a
[
"
T
e
m
p
e
r
a
t
u
r
e
M
a
p
"
]
/
@
R
e
s
c
a
l
e
[
V
V
a
l
]
)
]
}
]
]
I
n
[
]
:
=
(
*
S
p
a
t
i
a
l
E
v
o
l
u
t
i
o
n
o
f
G
r
a
p
h
s
*
)
G
r
a
p
h
L
i
s
t
=
{
}
F
o
r
[
j
=
0
,
j
<
1
1
,
j
+
+
,
g
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
x
,
y
,
y
}
,
{
z
,
x
,
u
}
}
{
{
y
,
v
,
y
}
,
{
y
,
z
,
v
}
,
{
u
,
v
,
v
}
}
,
{
{
1
,
2
,
2
}
,
{
2
,
1
,
2
}
}
,
5
0
0
+
(
j
*
1
0
0
)
,
"
F
i
n
a
l
S
t
a
t
e
"
]
;
C
l
e
a
r
A
l
l
[
x
]
;
C
l
e
a
r
A
l
l
[
y
]
;
o
p
=
-
L
a
p
l
a
c
i
a
n
[
u
[
x
,
y
]
,
{
x
,
y
}
]
-
5
;
B
n
d
r
y
=
D
i
r
i
c
h
l
e
t
C
o
n
d
i
t
i
o
n
[
u
[
x
,
y
]
=
=
1
,
x
≤
0
]
;
G
r
a
p
h
L
i
s
t
=
{
G
r
a
p
h
L
i
s
t
,
H
y
p
e
r
g
r
a
p
h
P
D
E
S
o
l
v
e
r
[
g
,
o
p
,
B
n
d
r
y
]
}
]
G
r
a
p
h
L
i
s
t
=
F
l
a
t
t
e
n
[
G
r
a
p
h
L
i
s
t
]
I
n
[
]
:
=
{
}
O
u
t
[
]
=
,
,
,
,
,
,
,
,
,
,
And now we have a function that can be applied to solve PDEs on hypergraphs and represent the solutions!
For the next part, we're going to be solving the 2D Burgers' Equation, which is a quasilinear hyperbolic PDE with the two spatial dimensions represented by a system of coupled PDEs.
Firstly, we define a new function that creates a mesh out of a given hypergraph:
C
l
e
a
r
A
l
l
[
x
]
;
C
l
e
a
r
A
l
l
[
y
]
G
r
a
p
h
G
e
n
e
r
a
t
o
r
[
g
_
]
:
=
M
o
d
u
l
e
[
{
G
,
C
,
S
C
}
,
G
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
H
y
p
e
r
g
r
a
p
h
T
o
G
r
a
p
h
"
]
[
g
]
;
C
=
G
r
a
p
h
E
m
b
e
d
d
i
n
g
[
G
]
;
S
C
=
S
C
/
(
M
e
a
n
[
C
[
[
A
l
l
,
1
]
]
]
)
;
S
C
=
#
-
{
M
e
a
n
[
C
[
[
A
l
l
,
1
]
]
]
,
M
e
a
n
[
C
[
[
A
l
l
,
2
]
]
]
}
&
/
@
(
C
)
;
R
e
t
u
r
n
[
G
]
]
I
n
[
]
:
=
K
=
G
r
a
p
h
G
e
n
e
r
a
t
o
r
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
{
{
x
,
y
,
y
}
,
{
z
,
x
,
u
}
}
{
{
y
,
v
,
y
}
,
{
y
,
z
,
v
}
,
{
u
,
v
,
v
}
}
,
{
{
0
,
0
,
0
}
,
{
0
,
0
,
0
}
}
,
1
0
2
3
,
"
F
i
n
a
l
S
t
a
t
e
"
]
]
I
n
[
]
:
=
O
u
t
[
]
=
With the graph generated, we define a matrix of initial values to be assigned to each vertex of the graph. We then choose a set of vertices and assign a different value to them, this is done so we can model how shock wave behaves on the generated meshes:
V
V
a
l
s
=
F
i
r
s
t
[
T
a
b
l
e
[
1
,
{
i
,
3
2
}
,
{
j
,
3
2
}
]
/
/
M
a
t
r
i
x
F
o
r
m
]
U
V
a
l
s
=
F
i
r
s
t
[
T
a
b
l
e
[
1
,
{
i
,
3
2
}
,
{
j
,
3
2
}
]
/
/
M
a
t
r
i
x
F
o
r
m
]
V
V
a
l
s
[
[
(
3
)
;
;
(
1
1
)
,
(
3
)
;
;
1
1
]
]
=
T
a
b
l
e
[
C
o
n
s
t
a
n
t
A
r
r
a
y
[
2
,
9
]
,
{
i
,
1
,
9
}
]
U
V
a
l
s
[
[
(
3
)
;
;
(
1
1
)
,
(
3
)
;
;
1
1
]
]
=
T
a
b
l
e
[
C
o
n
s
t
a
n
t
A
r
r
a
y
[
2
,
9
]
,
{
i
,
1
,
9
}
]
G
T
1
=
G
r
a
p
h
[
K
,
V
e
r
t
e
x
W
e
i
g
h
t
(
V
V
a
l
s
/
/
F
l
a
t
t
e
n
)
]
G
r
a
p
h
L
i
s
t
2
=
{
S
e
t
P
r
o
p
e
r
t
y
[
G
T
1
,
{
V
e
r
t
e
x
S
t
y
l
e
T
h
r
e
a
d
[
V
e
r
t
e
x
L
i
s
t
[
G
T
1
]
(
C
o
l
o
r
D
a
t
a
[
"
T
e
m
p
e
r
a
t
u
r
e
M
a
p
"
]
/
@
R
e
s
c
a
l
e
[
V
V
a
l
s
/
/
F
l
a
t
t
e
n
]
)
]
}
]
}
F
l
a
t
t
e
n
[
G
r
a
p
h
L
i
s
t
2
]
I
n
[
]
:
=
O
u
t
[
]
=
The generated graph has a few values that are higher than the rest of the graph. We will now solve the Burger's Equation and see how this propagates throughout the graph:
d
x
=
0
.
0
1
d
y
=
0
.
0
1
d
t
=
0
.
0
1
F
o
r
[
i
=
1
,
i
<
6
,
i
+
+
,
U
n
=
U
V
a
l
s
;
V
n
=
V
V
a
l
s
;
U
V
a
l
s
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
=
(
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
-
(
d
t
/
d
x
)
*
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
*
(
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
-
U
n
[
[
2
;
;
3
1
,
1
;
;
3
0
]
]
)
-
(
d
t
/
d
y
)
*
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
*
(
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
-
U
n
[
[
1
;
;
3
0
,
2
;
;
3
1
]
]
)
+
(
0
.
0
1
*
(
(
d
t
/
d
x
)
^
2
)
)
*
(
U
n
[
[
2
;
;
3
1
,
3
;
;
3
2
]
]
-
(
2
*
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
+
U
n
[
[
2
;
;
3
1
,
1
;
;
3
0
]
]
)
)
+
(
0
.
0
1
*
(
(
d
t
/
d
y
)
^
2
)
)
*
(
U
n
[
[
3
;
;
3
2
,
2
;
;
3
1
]
]
-
(
2
*
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
)
+
U
n
[
[
1
;
;
3
0
,
2
;
;
3
1
]
]
)
)
;
V
V
a
l
s
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
=
(
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
-
(
d
t
/
d
x
)
*
U
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
*
(
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
-
V
n
[
[
2
;
;
3
1
,
1
;
;
3
0
]
]
)
-
(
d
t
/
d
y
)
*
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
*
(
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
-
V
n
[
[
1
;
;
3
0
,
2
;
;
3
1
]
]
)
+
(
0
.
0
1
*
(
(
d
t
/
d
x
)
^
2
)
)
*
(
V
n
[
[
2
;
;
3
1
,
3
;
;
3
2
]
]
-
(
2
*
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
+
V
n
[
[
2
;
;
3
1
,
1
;
;
3
0
]
]
)
)
+
(
0
.
0
1
*
(
(
d
t
/
d
y
)
^
2
)
)
*
(
V
n
[
[
3
;
;
3
2
,
2
;
;
3
1
]
]
-
(
2
*
V
n
[
[
2
;
;
3
1
,
2
;
;
3
1
]
]
)
+
V
n
[
[
1
;
;
3
0
,
2
;
;
3
1
]
]
)
)
;
W
G
r
a
p
h
=
G
r
a
p
h
[
K
,
V
e
r
t
e
x
W
e
i
g
h
t
(
V
V
a
l
s
/
/
F
l
a
t
t
e
n
)
]
;
G
r
a
p
h
L
i
s
t
2
=
{
G
r
a
p
h
L
i
s
t
2
,
S
e
t
P
r
o
p
e
r
t
y
[
W
G
r
a
p
h
,
{
V
e
r
t
e
x
S
t
y
l
e
T
h
r
e
a
d
[
V
e
r
t
e
x
L
i
s
t
[
W
G
r
a
p
h
]
(
C
o
l
o
r
D
a
t
a
[
"
T
e
m
p
e
r
a
t
u
r
e
M
a
p
"
]
/
@
R
e
s
c
a
l
e
[
V
V
a
l
s
/
/
F
l
a
t
t
e
n
]
)
]
}
]
}
]
F
l
a
t
t
e
n
[
G
r
a
p
h
L
i
s
t
2
]
I
n
[
]
:
=
,
,
,
,
,
O
u
t
[
]
=
We can see that the model actually does capture shock as we can see the values propagate throughout the system.
From this short demonstration, we established that the Wolfram model meshes, as spatial discretizations, prove to be feasible meshes to solve PDEs numerically on. From here, I think the goal is to try to expand this to more equations and see how the solutions behave on the graphs.
POSTED BY:
Yanal Marji
Answer
Mark as an Answer
Reply
|
Flag
Reply to this discussion
in reply to
Add Notebook
Community posts can be styled and formatted using the
Markdown syntax
.
Tag limit exceeded
Note: Only the first five people you tag will receive an email notification; the other tagged names will appear as links to their profiles.
Publish anyway
Cancel
Reply Preview
Attachments
Remove
Add a file to this post
Follow this discussion
or
Discard
Group Abstract
Be respectful. Review our
Community Guidelines
to understand your role and responsibilities.
Community Terms of Use
Feedback
Enable JavaScript to interact with content and submit forms on Wolfram websites.
Learn how »