WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Premier Service
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Physics
Graphics and Visualization
Graphs and Networks
Wolfram Summer School
2
Joseph Blazer
[WSS20] EPR Interactions in Generational Multiway Systems
Joseph Blazer
Posted
6 months ago
663 Views
|
0 Replies
|
2 Total Likes
Follow this post
|
The deterministic nature of Wolfram models (along with Bell's theorem) suggest non-local interactions are fundamental to exploring quantum systems. My project focuses on exploring non-local entanglement in multiway systems. One possible approach is based on the concept of a generational multiway system, which simplifies the usual multiway system by considering only maximal update events and the states derived from them. This constraint might provide a mechanism for non-local correlations. Aside from computational and analytic simplicity, the generational states of a system are expected to have a physical interpretation in terms of classical outcomes (this suggests a possible connection to Gerard 't Hooft's notion of an ontological basis for Hilbert space).
Graph of a Simple System
In a multiway generational system like this, I am trying to understand each generational state as a real, ontological state of the “universe” at a particular time. A path through the generational system is a complete state description in space-time, with each step being an indivisible time step. By positing that the universe acts in such a way as to fully transform the entire spatial hypergraph with a maximal update step in each time step, we open up the possibility for instantaneous non-local interactions and correlations between spatial subgraphs which are arbitrarily far away.
Here is a graph of a generational multiway evolution system. In constructing these graphs, a main issue is the dramatic increase in computation required at each step:
g
r
a
p
h
O
u
t
l
i
n
e
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
}
,
2
]
;
/
/
T
i
m
e
r
g
r
a
p
h
O
u
t
l
i
n
e
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
}
,
3
]
;
/
/
T
i
m
e
r
g
r
a
p
h
O
u
t
l
i
n
e
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
}
,
4
]
/
/
T
i
m
e
r
I
n
[
]
:
=
50.2 ms
O
u
t
[
]
=
144.2 ms
21307.5 ms
A
c
h
i
e
v
i
n
g
a
P
r
a
c
t
i
c
a
l
L
e
v
e
l
o
f
E
f
f
i
c
i
e
n
c
y
The main effort on this project so far has been working towards a generational multiway system constructor which is efficient enough to practically study the kinds of non-local interactions we are hypothesizing.This involved a few “hacks”. The generality of the code was reduced, but a whole new level of mathematical analysis of these kinds of maximal update rules seems to have been revealed.
getCanonicalDirectedGraph
At only the fourth generation, the problem of finding a canonical representation for a single hypergraph can take over 15 seconds. In cases where the hypergraph is composed of only 2-tuples, we can circumvent this computational complexity by treating the hypergraph as a directed graph:
g
e
t
C
a
n
o
n
i
c
a
l
H
y
p
e
r
g
r
a
p
h
[
{
{
1
,
4
}
,
{
7
,
6
}
,
{
1
,
2
}
,
{
1
,
v
6
0
9
}
,
{
2
,
v
6
0
9
}
,
{
3
,
v
6
0
9
}
,
{
2
,
3
}
,
{
2
,
v
6
1
0
}
,
{
3
,
v
6
1
0
}
,
{
4
,
v
6
1
0
}
,
{
5
,
1
}
,
{
5
,
v
6
1
1
}
,
{
1
,
v
6
1
1
}
,
{
3
,
v
6
1
1
}
,
{
6
,
2
}
,
{
6
,
v
6
1
2
}
,
{
2
,
v
6
1
2
}
,
{
4
,
v
6
1
2
}
}
]
/
/
T
i
m
e
r
I
n
[
]
:
=
17294.7 ms
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
5
,
1
}
,
{
5
,
3
}
,
{
2
,
6
}
,
{
5
,
6
}
,
{
5
,
7
}
,
{
7
,
4
}
,
{
1
,
8
}
,
{
7
,
8
}
,
{
9
,
1
}
,
{
9
,
8
}
,
{
1
0
,
5
}
,
{
1
0
,
6
}
,
{
1
1
,
9
}
}
O
u
t
[
]
=
g
e
t
C
a
n
o
n
i
c
a
l
D
i
r
e
c
t
e
d
G
r
a
p
h
[
{
{
1
,
4
}
,
{
7
,
6
}
,
{
1
,
2
}
,
{
1
,
v
6
0
9
}
,
{
2
,
v
6
0
9
}
,
{
3
,
v
6
0
9
}
,
{
2
,
3
}
,
{
2
,
v
6
1
0
}
,
{
3
,
v
6
1
0
}
,
{
4
,
v
6
1
0
}
,
{
5
,
1
}
,
{
5
,
v
6
1
1
}
,
{
1
,
v
6
1
1
}
,
{
3
,
v
6
1
1
}
,
{
6
,
2
}
,
{
6
,
v
6
1
2
}
,
{
2
,
v
6
1
2
}
,
{
4
,
v
6
1
2
}
}
]
/
/
T
i
m
e
r
I
n
[
]
:
=
0.9 ms
{
{
1
,
5
}
,
{
2
,
4
}
,
{
2
,
8
}
,
{
3
,
9
}
,
{
3
,
1
1
}
,
{
4
,
3
}
,
{
4
,
7
}
,
{
4
,
8
}
,
{
4
,
1
0
}
,
{
5
,
7
}
,
{
5
,
9
}
,
{
6
,
8
}
,
{
6
,
1
0
}
,
{
6
,
1
1
}
,
{
7
,
6
}
,
{
7
,
9
}
,
{
7
,
1
0
}
,
{
7
,
1
1
}
}
O
u
t
[
]
=
Notice the two “canonical” representations are
not identical
.
◼
This is OK. Canonicalization just mods out by hypergraph isomorphism, and two {2-tuple}hypergraphs are isomorphic if and only if their associated directed graphs are isomorphic.
Because the code is consistent, the end result is the same up to hypergraph isomorphism, i.e. choice of representative for each coset of isomorphic hypergraphs.
Perhaps there is a notion of isomorphism between entire evolution systems that would be worth exploring.
◼
Of course, using this canonicalization procedure eliminates the possibility of studying hypergraphs in their full generality.
◼
getMaximalMatchSets
These algorithms extract all the maximal, non-overlapping update sets for a given hypergraph and rule. The first method we tried was so elegant and solid, but quickly became too slow to be practical. The new code is a bit hacky, but I believe it gets the job done in many important cases. Conditions in which my code fails and succeeds can be delineated by thorough analysis, and this analysis should lead to techniques for improving the generality of this simple algorithm while maintaining acceptable efficiency.
m
a
x
i
m
a
l
M
a
t
c
h
S
e
t
s
[
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
5
,
1
}
,
{
5
,
3
}
,
{
2
,
6
}
,
{
5
,
6
}
,
{
5
,
7
}
,
{
7
,
4
}
,
{
1
,
8
}
,
{
7
,
8
}
,
{
9
,
1
}
,
{
9
,
8
}
,
{
1
0
,
5
}
,
{
1
0
,
6
}
,
{
1
1
,
9
}
}
,
T
o
P
a
t
t
e
r
n
R
u
l
e
s
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
]
[
[
1
]
]
]
/
/
T
i
m
e
r
I
n
[
]
:
=
108207. ms
{
{
{
1
,
2
}
,
{
3
,
5
}
,
{
4
,
1
2
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
5
}
,
{
4
,
1
2
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
5
}
,
{
4
,
1
2
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
8
}
,
{
4
,
1
2
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
8
}
,
{
4
,
1
2
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
8
}
,
{
4
,
1
2
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
4
,
1
2
}
,
{
5
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
4
,
1
2
}
,
{
5
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
4
,
1
2
}
,
{
5
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
5
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
5
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
5
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
5
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
5
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
5
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
5
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
5
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
5
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
}
O
u
t
[
]
=
g
e
t
M
a
x
i
m
a
l
M
a
t
c
h
S
e
t
s
[
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
5
,
1
}
,
{
5
,
3
}
,
{
2
,
6
}
,
{
5
,
6
}
,
{
5
,
7
}
,
{
7
,
4
}
,
{
1
,
8
}
,
{
7
,
8
}
,
{
9
,
1
}
,
{
9
,
8
}
,
{
1
0
,
5
}
,
{
1
0
,
6
}
,
{
1
1
,
9
}
}
,
T
o
P
a
t
t
e
r
n
R
u
l
e
s
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
]
[
[
1
]
]
]
/
/
T
i
m
e
r
I
n
[
]
:
=
164.6 ms
{
{
{
1
,
2
}
,
{
3
,
5
}
,
{
4
,
1
2
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
5
}
,
{
4
,
1
2
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
5
}
,
{
4
,
1
2
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
8
}
,
{
4
,
1
2
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
8
}
,
{
4
,
1
2
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
3
,
8
}
,
{
4
,
1
2
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
4
,
1
2
}
,
{
5
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
4
,
1
2
}
,
{
5
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
2
}
,
{
4
,
1
2
}
,
{
5
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
5
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
5
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
5
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
3
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
5
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
5
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
4
}
,
{
2
,
1
2
}
,
{
5
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
5
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
3
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
5
,
8
}
,
{
6
,
7
}
,
{
9
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
5
,
8
}
,
{
6
,
9
}
,
{
7
,
1
0
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
,
{
{
1
,
1
2
}
,
{
2
,
4
}
,
{
5
,
8
}
,
{
6
,
1
0
}
,
{
7
,
9
}
,
{
1
1
,
1
3
}
,
{
1
4
,
1
5
}
,
{
1
6
,
1
7
}
}
}
O
u
t
[
]
=
m
a
x
i
m
a
l
M
a
t
c
h
S
e
t
s
[
h
y
p
e
r
g
r
a
p
h
_
,
p
a
t
t
e
r
n
_
]
:
=
M
o
d
u
l
e
[
{
m
a
t
c
h
e
s
,
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
,
s
u
b
s
e
t
R
e
l
a
t
i
o
n
s
,
m
a
x
i
m
a
l
S
u
b
s
e
t
s
}
,
m
a
t
c
h
e
s
=
S
u
b
s
e
t
P
o
s
i
t
i
o
n
[
h
y
p
e
r
g
r
a
p
h
,
p
a
t
t
e
r
n
]
;
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
=
S
e
l
e
c
t
[
D
u
p
l
i
c
a
t
e
F
r
e
e
Q
[
C
a
t
e
n
a
t
e
[
#
]
]
&
]
@
S
u
b
s
e
t
s
[
m
a
t
c
h
e
s
]
;
s
u
b
s
e
t
R
e
l
a
t
i
o
n
s
=
R
e
l
a
t
i
o
n
G
r
a
p
h
[
S
u
b
s
e
t
Q
[
#
2
,
#
1
]
&
&
(
N
o
t
[
S
a
m
e
Q
[
#
1
,
#
2
]
]
)
&
,
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
,
"
D
i
r
e
c
t
e
d
E
d
g
e
s
"
T
r
u
e
]
;
m
a
x
i
m
a
l
S
u
b
s
e
t
s
=
V
e
r
t
e
x
L
i
s
t
[
s
u
b
s
e
t
R
e
l
a
t
i
o
n
s
]
[
[
F
i
r
s
t
/
@
P
o
s
i
t
i
o
n
[
V
e
r
t
e
x
O
u
t
D
e
g
r
e
e
[
s
u
b
s
e
t
R
e
l
a
t
i
o
n
s
]
,
0
]
]
]
;
m
a
x
i
m
a
l
S
u
b
s
e
t
s
]
g
e
t
M
a
x
i
m
a
l
M
a
t
c
h
S
e
t
s
[
h
y
p
e
r
g
r
a
p
h
_
,
p
a
t
t
e
r
n
_
]
:
=
M
o
d
u
l
e
[
{
m
a
t
c
h
e
s
,
m
a
t
c
h
e
s
C
o
u
n
t
,
r
e
l
a
t
i
o
n
s
C
o
u
n
t
,
p
a
t
t
e
r
n
S
i
z
e
,
m
a
x
P
i
g
e
o
n
,
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
,
m
a
x
L
e
n
g
t
h
,
m
a
x
i
m
a
l
S
u
b
s
e
t
s
}
,
m
a
t
c
h
e
s
=
S
u
b
s
e
t
P
o
s
i
t
i
o
n
[
h
y
p
e
r
g
r
a
p
h
,
p
a
t
t
e
r
n
]
;
m
a
t
c
h
e
s
C
o
u
n
t
=
L
e
n
g
t
h
[
m
a
t
c
h
e
s
]
;
r
e
l
a
t
i
o
n
s
C
o
u
n
t
=
L
e
n
g
t
h
[
D
e
l
e
t
e
D
u
p
l
i
c
a
t
e
s
[
F
l
a
t
t
e
n
[
m
a
t
c
h
e
s
]
]
]
;
p
a
t
t
e
r
n
S
i
z
e
=
L
e
n
g
t
h
[
F
i
r
s
t
[
m
a
t
c
h
e
s
]
]
;
m
a
x
P
i
g
e
o
n
=
F
l
o
o
r
[
r
e
l
a
t
i
o
n
s
C
o
u
n
t
/
p
a
t
t
e
r
n
S
i
z
e
]
;
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
=
S
e
l
e
c
t
[
D
u
p
l
i
c
a
t
e
F
r
e
e
Q
[
C
a
t
e
n
a
t
e
[
#
]
]
&
]
@
S
u
b
s
e
t
s
[
m
a
t
c
h
e
s
,
m
a
x
P
i
g
e
o
n
]
;
m
a
x
L
e
n
g
t
h
=
L
e
n
g
t
h
[
L
a
s
t
[
S
o
r
t
[
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
]
]
]
;
m
a
x
i
m
a
l
S
u
b
s
e
t
s
=
S
e
l
e
c
t
[
L
e
n
g
t
h
[
#
]
=
=
=
m
a
x
L
e
n
g
t
h
&
]
@
n
o
n
O
v
e
r
l
a
p
p
i
n
g
S
u
b
s
e
t
s
;
m
a
x
i
m
a
l
S
u
b
s
e
t
s
]
WolframGenerationalMultiwaySystem
These two simplifications, along with some general reorganization of code, had a profound impact on the efficiency of computing the generational evolution of {2-tuple}hypergraphs. So long as one is careful to consider the limitations placed by these simplifications, there are a wide range of interesting systems and rules to be explored with this function:
W
o
l
f
r
a
m
G
e
n
e
r
a
t
i
o
n
a
l
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
}
,
4
]
/
/
T
i
m
e
r
74856.6 ms
{
{
{
{
1
,
2
}
,
{
1
,
3
}
}
}
,
{
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
4
,
3
}
}
}
,
{
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
2
,
4
}
,
{
4
,
3
}
,
{
5
,
4
}
}
}
,
{
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
5
,
1
}
,
{
5
,
3
}
,
{
6
,
2
}
,
{
6
,
4
}
,
{
7
,
6
}
}
}
,
{
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
5
,
1
}
,
{
5
,
3
}
,
{
2
,
6
}
,
{
5
,
6
}
,
{
5
,
7
}
,
{
7
,
4
}
,
{
1
,
8
}
,
{
7
,
8
}
,
{
9
,
1
}
,
{
9
,
8
}
,
{
1
0
,
5
}
,
{
1
0
,
6
}
,
{
1
1
,
9
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
1
,
5
}
,
{
3
,
5
}
,
{
2
,
6
}
,
{
3
,
6
}
,
{
7
,
1
}
,
{
7
,
5
}
,
{
8
,
4
}
,
{
8
,
6
}
,
{
2
,
9
}
,
{
8
,
9
}
,
{
1
0
,
2
}
,
{
1
0
,
9
}
,
{
1
1
,
1
0
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
,
{
2
,
3
}
,
{
1
,
4
}
,
{
2
,
4
}
,
{
1
,
5
}
,
{
5
,
2
}
,
{
2
,
6
}
,
{
5
,
6
}
,
{
7
,
1
}
,
{
7
,
3
}
,
{
8
,
4
}
,
{
8
,
6
}
,
{
5
,
9
}
,
{
8
,
9
}
,
{
1
0
,
5
}
,
{
1
0
,
9
}
,
{
1
1
,
1
0
}
}
}
}
O
u
t
[
]
=
W
o
l
f
r
a
m
G
e
n
e
r
a
t
i
o
n
a
l
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
{
x
,
y
}
,
{
x
,
z
}
}
{
{
x
,
y
}
,
{
x
,
w
}
,
{
y
,
w
}
,
{
z
,
w
}
}
,
{
{
1
,
2
}
,
{
1
,
3
}
}
,
4
]
/
/
T
i
m
e
r
I
n
[
]
:
=
52.3 ms
{
{
{
{
1
,
2
}
,
{
1
,
3
}
}
}
,
{
{
{
1
,
4
}
,
{
2
,
3
}
,
{
2
,
4
}
,
{
3
,
4
}
}
}
,
{
{
{
1
,
4
}
,
{
2
,
3
}
,
{
2
,
5
}
,
{
3
,
4
}
,
{
3
,
5
}
,
{
4
,
5
}
}
}
,
{
{
{
1
,
5
}
,
{
2
,
3
}
,
{
2
,
6
}
,
{
3
,
5
}
,
{
3
,
6
}
,
{
3
,
7
}
,
{
4
,
6
}
,
{
4
,
7
}
,
{
5
,
4
}
,
{
5
,
7
}
}
}
,
{
{
{
1
,
7
}
,
{
2
,
4
}
,
{
2
,
8
}
,
{
3
,
9
}
,
{
3
,
1
1
}
,
{
4
,
3
}
,
{
4
,
7
}
,
{
4
,
8
}
,
{
4
,
1
0
}
,
{
5
,
8
}
,
{
5
,
9
}
,
{
5
,
1
0
}
,
{
6
,
5
}
,
{
6
,
9
}
,
{
6
,
1
1
}
,
{
7
,
6
}
,
{
7
,
1
0
}
,
{
7
,
1
1
}
}
,
{
{
1
,
7
}
,
{
2
,
5
}
,
{
2
,
8
}
,
{
3
,
9
}
,
{
3
,
1
0
}
,
{
3
,
1
1
}
,
{
4
,
6
}
,
{
4
,
1
0
}
,
{
4
,
1
1
}
,
{
5
,
6
}
,
{
5
,
7
}
,
{
5
,
8
}
,
{
5
,
9
}
,
{
6
,
8
}
,
{
6
,
1
0
}
,
{
7
,
4
}
,
{
7
,
9
}
,
{
7
,
1
1
}
}
,
{
{
1
,
5
}
,
{
1
,
9
}
,
{
2
,
7
}
,
{
3
,
8
}
,
{
3
,
1
0
}
,
{
3
,
1
1
}
,
{
4
,
6
}
,
{
4
,
1
0
}
,
{
4
,
1
1
}
,
{
5
,
6
}
,
{
5
,
7
}
,
{
5
,
8
}
,
{
5
,
9
}
,
{
6
,
8
}
,
{
6
,
9
}
,
{
6
,
1
0
}
,
{
7
,
4
}
,
{
7
,
1
1
}
}
}
}
O
u
t
[
]
=
Next Steps
As previously mentioned, these “shortcuts” radically improve the computation speed of generational evolution for a certain class of wolfram models while simultaneously imposing serious limitations on general applicability. Fortunately, the code still has much room for improvement. There are possibly many ways to improve efficiency (parallelization during singleUpdate?).
Furthermore, this code gives us a starting point to branch out from. There is a depth of structure in maximal update sets when viewed as hypergraphs in their own right. Studying these structures may lead us to insights that open up possibilities for classes of rules/hypergraphs which could not be handled with the current version of this algorithm.
Keywords
Wolfram Physics
◼
Wolfram Language
◼
Bell’s Inequality
◼
Acknowledgment
Mentor
: Kiel Howe
Thank you Kiel for all your help.
POSTED BY:
Joseph Blazer
Answer
Mark as an Answer
Reply
|
Flag
Reply to this discussion
in reply to
Add Notebook
Community posts can be styled and formatted using the
Markdown syntax
.
Tag limit exceeded
Note: Only the first five people you tag will receive an email notification; the other tagged names will appear as links to their profiles.
Publish anyway
Cancel
Reply Preview
Attachments
Remove
Add a file to this post
Follow this discussion
or
Discard
Group Abstract
Be respectful. Review our
Community Guidelines
to understand your role and responsibilities.
Community Terms of Use
Feedback
Enable JavaScript to interact with content and submit forms on Wolfram websites.
Learn how »