Message Boards Message Boards

GROUPS:

Catch throw with no results

Posted 12 days ago
176 Views
|
8 Replies
|
3 Total Likes
|

Can anyone tell me if the program lines are correct ? It doe not give me any output and suddenly stops

n=69473167820511765242830133883162231196373893172462572947321681009276855429531868770882474054742274999418781196191128350605290638907281085633288937673680524199820066895936872314770237447995716771439959238004273486653770489519884087184561255933086729316005893883052796589968722075656357507968378869005241089165689837538775946470654446499501966076614890157622775988094202464078929288907735084091176712819439586018201262584675330599303231799651328074634544385044419476755076985251636084219268328080088251662043698866454523084731639802544765817015037852583580045461950139773968906062830312323507628556726568436388771648582054725350555439952871014106950029398605002226628662285437033779318551536747294374952255496472680780665826457366896250220249866954099419856397786258180576705276869616498812031948075619511682529816958383878485379938346995226313984712037892411186524390370830098196489452622389323720195586168765517245297601070346396828054779915463530671108671936053175605957994436181065402719501539141
sq=Table[j,{j,10000}]
b=Select[sq,PrimeQ,(1000)]
n1=(n^2-1)+b
Catch[Do[If[PrimeQ[n1],Throw[n1]],1]]
8 Replies

Hello, it is by no means clear what you want to do.

Your do-loop doesn't have an iterator and can't work. Then: b should be an array which is added to n^2 - 1, that means to any element of b is added this expression, but what is n?

Hi Hans! n is the large prime number on the first line. I just want to add a prime number to the square of n -1 and throw when the result is a prime number. On wolfram documentation it says the last digit 1 after the Throw[1]], is the number of times i want to do the loop. Could you tell me how to make the loop right?

I got what I wanted by a different manner, but I still would like to learn how to loop.

n=69473167820511765242830133883162231196373893172462572947321681009276855429531868770882474054742274999418781196191128350605290638907281085633288937673680524199820066895936872314770237447995716771439959238004273486653770489519884087184561255933086729316005893883052796589968722075656357507968378869005241089165689837538775946470654446499501966076614890157622775988094202464078929288907735084091176712819439586018201262584675330599303231799651328074634544385044419476755076985251636084219268328080088251662043698866454523084731639802544765817015037852583580045461950139773968906062830312323507628556726568436388771648582054725350555439952871014106950029398605002226628662285437033779318551536747294374952255496472680780665826457366896250220249866954099419856397786258180576705276869616498812031948075619511682529816958383878485379938346995226313984712037892411186524390370830098196489452622389323720195586168765517245297601070346396828054779915463530671108671936053175605957994436181065402719501539141
sq=Table[j,{j,10000}]
b=Select[sq,PrimeQ,(1000)]
n2=(n^2-1)-(b)
n1=(n^2-1)+b

b1=Select[n1,PrimeQ,(10)]

Perhaps you meant this ( but it takes quite a time, at least on my machine and version (Mathematica 7))

n = 694731678205117652428301338831622311963738931724625729473216810092\
7685542953186877088247405474227499941878119619112835060529063890728108\
5633288937673680524199820066895936872314770237447995716771439959238004\
2734866537704895198840871845612559330867293160058938830527965899687220\
7565635750796837886900524108916568983753877594647065444649950196607661\
4890157622775988094202464078929288907735084091176712819439586018201262\
5846753305993032317996513280746345443850444194767550769852516360842192\
6832808008825166204369886645452308473163980254476581701503785258358004\
5461950139773968906062830312323507628556726568436388771648582054725350\
5554399528710141069500293986050022266286622854370337793185515367472943\
7495225549647268078066582645736689625022024986695409941985639778625818\
0576705276869616498812031948075619511682529816958383878485379938346995\
2263139847120378924111865243903708300981964894526223893237201955861687\
6551724529760107034639682805477991546353067110867193605317560595799443\
6181065402719501539141;

sq = Table[j, {j, 10000}];
b = Select[sq, PrimeQ, 1000];
n1 = (n^2 - 1);
Catch[
 Do[
  If[PrimeQ[n1 + b[[i]]], Throw[b[[i]]]],
  {i, 1, Length[b]}
  ]]

If it is correct then the number caught is a prime ... it is what I want to prove that the square of a prime number -1 + a certain prime gives a prime number, so the reverse is also true and it serves as a way, probably faster to check if a number is a prime upon the use of a table of other primes, but you surely helped me a lot....Thank you so much God bless you.

But now I am running in to another problem if I pick the result of the calculation it is giving unequal length problem which does not happen in the first calculation... I want to loop this until it hits over the largest known prime, but I think it is too ambitious..

Here something without Do, giving several (here two) answers, but running several minutes. (Use your n given above)

sq = Table[j, {j, 10000}];
b = Select[sq, PrimeQ, 1000];
n1 = (n^2 - 1);
b1 = Transpose[{Range[Length[b]], b}];
Select[b1, PrimeQ[#[[2]] + n1] &]

Thanks once again Hans, you are incredible!!!

Posted 11 days ago

Hello, it is by no means clear what you want to do.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract