Clear["Global'*"]
Vtn = 1;
Vtp = 1;
kn = 1;
kp = 1;
\[Lambda] = 0.02;
Vdd = 5;
Ids[Vgs_, Vds_] := \[Piecewise] {
{0, Vgs < Vtn},
{kn*((Vgs - Vtn)*Vds - 1/2 Vds^2)*(1 + \[Lambda]*Vds),
Vgs >= Vtn && Vds < Vgs - Vtn},
{1/2*kn*(Vgs - Vtn)^2*((1 + \[Lambda]*Vds)),
Vgs >= Vtn && Vds >= Vgs - Vtn}
}
Isd[Vgs_, Vds_] := \[Piecewise] {
{0, Vgs < Vtp},
{kp*((Vdd - Vgs - Vtp)*(Vdd - Vds) -
1/2 (Vdd - Vds)^2)*(1 + \[Lambda]*(Vdd - Vds)),
Vgs >= Vtp && Vds >= Vgs - Vtp},
{1/2*kp*(Vdd - Vgs - Vtp)^2*((1 + \[Lambda]*(Vdd - Vds))),
Vgs >= Vtp && Vds <= Vgs - Vtp}
}
Table[FindRoot[
1/2*kn*(Vgs - Vtn)^2*((1 + \[Lambda]*Vds)) ==
kp*((Vdd - Vgs - Vtp)*(Vdd - Vds) -
1/2 (Vdd - Vds)^2)*(1 + \[Lambda]*(Vdd - Vds)), {Vgs, 0}], {Vgs,
0, 5}]
Hi, I am very new to using Mathematica however my professor believes we all know how to use it. Any help and tips would be great.
I am trying to use the FindRoot function to find Vds for Vgs input of 0 to 5 then table it so that I can Plot the graph of Vds Vs. Vgs which is the VTC curve of the inverter. But I can not seem to get find root to work.
Once again thanks for any help, you can give me.