Message Boards Message Boards

GROUPS:

Solve a System of equations using matrix inverse

Posted 5 months ago
965 Views
|
6 Replies
|
3 Total Likes
|

Hello, I am attempting to solve a system of equations by using the matrix inverse. I was able to create a system and separate the system into two matrices, but I am having issues generating the matrix inverse. I have attached the nb file containing my code.

Attachments:
6 Replies
Posted 5 months ago

Hi Willy,

There are at least a couple of problems.

Dimensions@system1
(* 24 *)

but there are 23 equations. The problem is that equation13 is repeated in the system1 list.

C = Inverse[A];
(* Set::wrsym: Symbol C is Protected. *)

The symbol C is a built-in WL symbol. All WL built-in symbols start with an uppercase letter, so avoid using symbol names that start with an uppercase letter. Use c instead.

Thank you so much for the assistance. I'm brand new to Mathematica, so I didn't even notice I had equation 13 in there twice, in my system1 statement.

Your matrix A is not a square matrix, so it has no inverse

Dimensions[A]

You wrote one equation twice in system1. And C is a Mma Symbol. This runs without error

Clear[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, \
x15, x16, x17, x18, x19, x20, x21, x22, x23]
equation1 = 
  634.14 x1 + 97.54 x10 - 216.48 x11 - 486.49 x12 + 12.46 x13 + 
    649.97 x14 + 877.29 x15 - 755.88 x16 + 365.27 x17 - 442.49 x18 + 
    736.68 x19 + 268.69 x2 - 387.29 x20 + 742.82 x21 - 348.74 x22 + 
    98.25 x23 - 939.96 x3 - 313.98 x4 + 672.09 x5 + 348.98 x6 + 
    754.7 x7 - 535.21 x8 - 72.71 x9 == 102.79;
equation2 = 
  57.49 x1 + 336.13 x10 - 306.59 x11 - 151.18 x12 + 393.28 x13 - 
    229.18 x14 + 21.16 x15 - 878.84 x16 - 733.05 x17 + 567.96 x18 - 
    596.09 x19 - 343.58 x2 + 553.37 x20 - 741.77 x21 + 550.17 x22 + 
    269.73 x23 + 854.11 x3 + 84.37 x4 + 995.49 x5 - 521.77 x6 + 
    477.37 x7 - 865.91 x8 + 908.69 x9 == -762.13;
equation3 = 
  768.64 x1 - 866.74 x10 - 322.2 x11 - 315.52 x12 + 627.03 x13 + 
    392.89 x14 - 477.87 x15 + 936.09 x16 - 379.37 x17 - 681.48 x18 + 
    997.81 x19 - 55.4 x2 - 160.5 x20 + 737.81 x21 - 886.85 x22 - 
    291.88 x23 - 987.62 x3 + 324.21 x4 - 770.56 x5 - 878.62 x6 + 
    880.97 x7 + 832.53 x8 + 916.11 x9 == 767.06;
equation4 = 
  852.33 x1 + 93.77 x10 - 308.41 x11 - 939.14 x12 - 618.9 x13 + 
    573.08 x14 + 61. x15 - 462.59 x16 - 241.62 x17 - 675.85 x18 - 
    38.36 x19 - 990.88 x2 - 783.38 x20 - 296.37 x21 + 921.63 x22 - 
    649.89 x23 - 435.02 x3 + 288.33 x4 + 576.8 x5 + 511.03 x6 - 
    77.95 x7 - 564.5 x8 - 298.31 x9 == 112.21;
equation5 = 
  646.65 x1 - 840.26 x10 - 106.99 x11 - 445.78 x12 + 505.43 x13 + 
    191.41 x14 - 912.5 x15 - 520.01 x16 - 23.7 x17 + 903.8 x18 - 
    631.25 x19 - 525.66 x2 + 530.8 x20 + 431.07 x21 + 66.8 x22 + 
    303.66 x23 - 336.69 x3 - 69.38 x4 - 15.55 x5 - 641.89 x6 - 
    57.87 x7 + 696.96 x8 + 409.45 x9 == 214.6;
equation6 = -552.61 x1 + 912.29 x10 - 975.39 x11 - 870.38 x12 + 
    921.44 x13 - 698.54 x14 + 862.28 x15 + 329.94 x16 + 988.37 x17 + 
    374.54 x18 + 637.58 x19 - 441.51 x2 - 42.11 x20 - 138.73 x21 + 
    690.18 x22 + 917.89 x23 - 142.99 x3 + 343.93 x4 - 58.83 x5 + 
    965.62 x6 + 945.54 x7 + 295.82 x8 - 428.23 x9 == 788.16;
equation7 = 
  38.29 x1 + 403.04 x10 - 690.25 x11 - 235.05 x12 + 636.74 x13 - 
    146.01 x14 - 945.1 x15 + 178.11 x16 + 838.91 x17 + 921.68 x18 - 
    676.65 x19 + 183.46 x2 - 820.45 x20 + 414.96 x21 - 406.99 x22 - 
    222.9 x23 + 910.97 x3 - 374.53 x4 - 899.46 x5 - 774.27 x6 + 
    995.92 x7 + 551.71 x8 + 56.73 x9 == -514.84;
equation8 = 
 190.75 x1 + 238.13 x10 - 984.05 x11 - 531.96 x12 - 919.46 x13 + 
   412.37 x14 - 379.33 x15 + 24.95 x16 + 823.48 x17 - 811.69 x18 - 
   228.43 x19 + 152.52 x2 + 468.03 x20 - 472.1 x21 + 466.73 x22 - 
   722.04 x23 - 556.3 x3 + 232.74 x4 + 231.01 x5 + 422.89 x6 + 
   158.29 x7 + 534. x8 + 542.32 x9 == -233.44; equation9 = 
 870.91 x1 + 556. x10 - 366.9 x11 - 144.72 x12 - 472.31 x13 + 
   30.68 x14 - 969.56 x15 - 403.76 x16 + 476.46 x17 - 869.8 x18 - 
   458.33 x19 - 705.33 x2 - 157.96 x20 + 212.32 x21 - 612.48 x22 - 
   739.55 x23 - 892.3 x3 - 138.97 x4 + 201.55 x5 - 293.1 x6 - 
   189.66 x7 - 240.01 x8 - 
   346.22 x9 == -963.15; equation10 = -778.6 x1 + 385.63 x10 - 
   900.46 x11 + 28.64 x12 + 270.83 x13 + 434.3 x14 - 314.46 x15 - 
   669.93 x16 + 122.05 x17 + 7.24 x18 + 615.19 x19 - 946.84 x2 + 
   433.12 x20 + 779.5 x21 - 849.43 x22 - 334.84 x23 + 580. x3 - 
   493.3 x4 - 526.83 x5 - 665.79 x6 - 352.95 x7 + 219.66 x8 - 
   560.62 x9 == -95.48
equation11 = 
 236.42 x1 - 15.5 x10 + 525.42 x11 - 177.3 x12 + 899.17 x13 + 
   622.3 x14 - 238.89 x15 + 292.48 x16 + 561.03 x17 + 29.5 x18 - 
   406.12 x19 + 343.69 x2 - 703.95 x20 - 443. x21 - 142.38 x22 - 
   208.98 x23 + 54.93 x3 + 206.79 x4 - 787.09 x5 - 151.16 x6 - 
   986.95 x7 + 273.85 x8 + 522.39 x9 == 155.73; equation12 = 
 680.18 x1 + 708.45 x10 - 664.91 x11 - 946.99 x12 - 392.22 x13 + 
   92.91 x14 - 63.53 x15 + 703.83 x16 - 320.08 x17 - 268.2 x18 + 
   422.39 x19 - 419.69 x2 - 420.1 x20 + 172.18 x21 + 328.86 x22 - 
   870.12 x23 - 982.71 x3 - 480.25 x4 - 825.52 x5 - 248.07 x6 + 
   652.84 x7 - 942.37 x8 - 244.09 x9 == 802.85;
equation13 = 
  50.63 x1 - 486.19 x10 - 346.43 x11 + 194.1 x12 + 791.08 x13 - 
    356.58 x14 + 566.14 x15 + 952.08 x16 - 602.24 x17 - 695.1 x18 - 
    928.78 x19 + 257.52 x2 - 542.2 x20 + 787.83 x21 + 519.67 x22 - 
    239.3 x23 + 253.41 x3 + 858.31 x4 + 775.11 x5 - 33.93 x6 + 
    949.52 x7 - 501.49 x8 - 932.67 x9 == 756.75;
equation14 =
 -282.05 x1 + 422.61 x10 + 768.42 x11 + 221.72 x12 - 283. x13 + 
   951.33 x14 + 5.37 x15 + 786.37 x16 - 20.16 x17 + 591.71 x18 + 
   821.73 x19 + 988.3 x2 + 720.57 x20 - 636.77 x21 + 583.91 x22 + 
   190.09 x23 - 70. x3 - 582.82 x4 - 584.18 x5 - 927.73 x6 - 
   66.66 x7 + 334.4 x8 - 314.91 x9 == -777.53; equation15 = 
 347.84 x1 + 342.35 x10 + 672.1 x11 + 403.15 x12 + 961.69 x13 + 
   428.25 x14 + 183.05 x15 + 855.27 x16 - 835.89 x17 - 169.98 x18 - 
   492.42 x19 + 108.05 x2 + 663.31 x20 + 26.26 x21 + 916.49 x22 - 
   176.56 x23 - 772.21 x3 + 188.46 x4 - 883.49 x5 + 244.16 x6 - 
   880.37 x7 + 0.84 x8 + 233.13 x9 == -275.74;
equation16 = -689. x1 + 44.41 x10 - 94.25 x11 - 712.75 x12 - 
   365.06 x13 - 80.49 x14 - 161.44 x15 + 242.22 x16 + 90.75 x17 - 
   986.12 x18 - 819.92 x19 - 296.6 x2 - 58.88 x20 - 372.61 x21 + 
   272.23 x22 + 66.93 x23 + 360.46 x3 - 976.77 x4 - 776.85 x5 + 
   897.3 x6 - 47.97 x7 - 234.66 x8 - 711.09 x9 == 786.52; equation17 =
  983.17 x1 + 863.82 x10 + 371.05 x11 - 719.86 x12 - 415.52 x13 - 
   589.89 x14 + 12.68 x15 - 88.53 x16 - 980.51 x17 - 178.96 x18 - 
   937.55 x19 - 257.57 x2 + 347.72 x20 + 212.37 x21 + 33.56 x22 + 
   851.85 x23 - 9.23 x3 - 634.54 x4 + 573.32 x5 + 281.41 x6 + 
   915.45 x7 - 140.7 x8 - 
   540.64 x9 == -68.35; equation18 = -518.67 x1 - 934.33 x10 + 
   399.3 x11 - 185.26 x12 + 740.53 x13 + 213.06 x14 + 158.16 x15 + 
   659.67 x16 + 216.62 x17 - 993.05 x18 + 89.73 x19 - 619.61 x2 + 
   603.47 x20 + 812.34 x21 + 488.95 x22 - 461.56 x23 - 587.24 x3 + 
   399.91 x4 - 837.61 x5 + 964.37 x6 - 255. x7 + 628.13 x8 - 
   231.17 x9 == 758.41;
equation19 = 
  333.16 x1 + 779.73 x10 - 559.82 x11 - 781.88 x12 - 465.08 x13 - 
    367.24 x14 - 742.58 x15 + 432.99 x16 + 215.89 x17 + 218.75 x18 + 
    230.71 x19 - 324.23 x2 - 545.6 x20 - 283.21 x21 + 676.47 x22 + 
    18.24 x23 - 475.34 x3 + 886.15 x4 - 887.09 x5 - 398.95 x6 - 
    660.04 x7 - 89.91 x8 + 264.35 x9 == 891.45;
equation20 = 
 913.14 x1 + 578.23 x10 + 544.77 x11 - 281.47 x12 + 45.8 x13 + 
   818.8 x14 - 27.56 x15 - 853.88 x16 - 734.34 x17 - 887.11 x18 - 
   426.76 x19 - 105.89 x2 - 286.53 x20 - 485.57 x21 - 762.6 x22 + 
   137.72 x23 - 270.55 x3 + 179.56 x4 + 109.98 x5 + 300.58 x6 - 
   578.92 x7 + 135.87 x8 + 270.43 x9 == 863.38; equation21 = 
 244.79 x1 + 891.92 x10 - 208.48 x11 - 199.29 x12 + 25.62 x13 + 
   510.89 x14 + 300.53 x15 + 953.35 x16 + 960. x17 + 341.88 x18 - 
   780.57 x19 - 772.53 x2 - 347.5 x20 + 328.68 x21 - 946.35 x22 + 
   877.18 x23 + 475.96 x3 - 991.6 x4 - 636.24 x5 + 37.6 x6 - 
   233.62 x7 + 851.72 x8 - 65.36 x9 == -932.19;
equation22 = -728.22 x1 + 571.07 x10 + 523.25 x11 - 47.01 x12 - 
    214.58 x13 + 35.19 x14 + 642.52 x15 - 125.15 x16 + 374.71 x17 - 
    116.44 x18 + 705.87 x19 - 355.76 x2 + 308.85 x20 + 275.03 x21 + 
    401.73 x22 + 424.5 x23 + 382.19 x3 - 804.71 x4 + 448.04 x5 - 
    606.38 x6 + 675.33 x7 - 360.01 x8 - 136.95 x9 == -562.9;
equation23 = 
  516.12 x1 - 189.52 x10 - 543.08 x11 - 610.05 x12 - 906.02 x13 - 
    388.31 x14 - 294.28 x15 + 377.96 x16 - 433.34 x17 + 96.14 x18 - 
    118.19 x19 - 577.27 x2 - 842.95 x20 - 124.59 x21 - 400.7 x22 + 
    695.05 x23 - 207.36 x3 + 919.4 x4 + 705.66 x5 + 921.18 x6 - 
    16.24 x7 + 783.9 x8 + 599.5 x9 == -805.68;
system1 = {equation1, equation2, equation3, equation4, equation5, 
   equation6, equation7, equation8, equation9, equation10, 
   equation11, equation12, equation13, equation14, equation15, 
   equation16, equation17, equation18, equation19, equation20, 
   equation21, equation22, equation23};
mSystem = 
  Normal@CoefficientArrays[
    system1, {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, 
     x14, x15, x16, x17, x18, x19, x20, x21, x22, x23}];
B = -mSystem[[1]];
A = mSystem[[2]];
(*times1Style@Column[{TraditionalForm@DisplayForm[GridBox[{{"\
\[Piecewise]",Column[system1]}}]],
Row[{"A = ",MatrixForm[A],"; b = ",MatrixForm[B]}]
}]*)
Ainv = Inverse[A];
X = Ainv.B

Thank you! I have another question as I am ew to using Wolfram Mathematica. Is there another way for me to display a linear equation as a matrix other than the way I used it below?

(*times1Style@Column[{TraditionalForm@DisplayForm[GridBox[{{"\
\[Piecewise]",Column[system1]}}]],
Row[{"A = ",MatrixForm[A],"; b = ",MatrixForm[B]}]
}]*)

display a linear equation as a matrix other than the way I used it below?

What exactly do you mean?

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract