Message Boards Message Boards

1
|
5237 Views
|
4 Replies
|
1 Total Likes
View groups...
Share
Share this post:

An interesting pattern comes out of Riemann sum

An interesting pattern comes out of Riemann sum

sq=Table[j,{j,1000}]
n=Select[sq,PrimeQ,(100)]
sq2=Table[k,{k,100}]
n3=sq2*-1
r=Table[k1,{k1,100}]
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n]))
fsolution=((((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])))*-1/12
ff=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r*1/n]))*1/2
fff=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r*1/2*-n3]))
ffff=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/2*n3]))
ffffsolution=((((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/-2*n3])))/-2
ffffa=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n3]))
ffffab=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/-0.083]))
h=f/ff
hb=f/(ff*2)
h2=ff/ffff
hh=f-ff
hh2=ffff-fff
z=(h2-h)*h
bb=Im[f]
bb1=Im[ff]
bb2=Im[fff]
bb3=ReIm[ffff]
bb3a=ReIm[ffffa]
cc=Re[ffffa]
cc2=Im[ffffa]
cc2b=Im[ffffab]
bb4=ReIm[fsolution]
bb5=Im[ffffsolution]
vva=Round[f]
vv1=Round[ff]
bba=Round[fff]
vvc=Round[ffff]
vvb=Round[ffffsolution]
vv=Round[fsolution]
g=2*Pi*(r+f)
gg=2*Pi*r
rr=(z-z*Power[z, (z)^-1])*2*n3
s1c=((1/2)+bb*r*Sqrt[-1])
s1cc=(((1)+bb*r*Sqrt[-1])+((0)+bb*r*Sqrt[-1]))/2
s1b=((1/2)+fsolution*bb4)
s1=(1/2)+fsolution*r
ss1=(1/2)+fsolution*r*Sqrt[-1]
ss2=(1/2)+bb1*r*Sqrt[-1]
ssss1=(1/2)+ff*r
ssss1b=((1/2)+bb2*r*Sqrt[-1])/-2
sss2=Re[ssss1]
ss3=(1/2)+fff*r*Sqrt[-1]
ssss=(1/2)+fff*r
sssa=(1/2)+cc2*Sqrt[-1*-n3]
sssab=(1/2)+cc2b*Sqrt[-1*-n3]
sssb=((1/2)+ffffsolution*r)/-2
sssb1=((1/2)+bb5*Sqrt[r*-1])/-2
sssc=(1/2)+ffff*r*Sqrt[-1]
sss3=Re[ssss]
s=ReIm[s1]
s2=ReIm[ss1]
sa=ReIm[ssss1]
sb=ReIm[ssss]
sc=ReIm[sssa]
sd=ReIm[sssb]
se=ReIm[sssc]
s2=(1/2)+vvc*r*Sqrt[-1]
zz=-n3
zx=n
x1c1c=\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(zx = 100000\), \(100100\)]\(1/zx*zx^s1cc\)\)
x1cc=ReIm[x1c1c]
x1cc1=Re[x1c1c]
x1cc2=Im[x1c1c]
ListLinePlot[x1cc]

PERFECT PATTERN OF RIEMANN SUM

4 Replies

I don't know how to show the manipulate so I am placing the whole program lines, sorry!! It is about squaring a circle...

sq=Table[j,{j,1000}]
n=Select[sq,PrimeQ,(100)]
sq2=Table[k,{k,100}]
n3=sq2*-1
r=Table[k1,{k1,100}]
f=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n]))
fsolution=((((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n])))*-1/12
ff=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r*1/n]))*1/2
fff=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r*1/2*-n3]))
ffff=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/2*n3]))
ffffsolution=((((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/-2*n3])))/-2
ffffa=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/n3]))
ffffab=(((Pi+1)*r)*Sqrt[(-2*Pi*r)/((Pi+1)*r)])/((Sqrt[(2*Pi*r)^2+2*Pi*r/-0.083]))
h=f/ff
hb=f/(ff*2)
h2=ff/ffff
hh=f-ff
hh2=ffff-fff
z=(h2-h)*h
bb=Im[f]
bb1=Im[ff]
bb2=Im[fff]
bb3=ReIm[ffff]
bb3a=ReIm[ffffa]
cc=Re[ffffa]
cc2=Im[ffffa]
cc2b=Im[ffffab]
bb4=ReIm[fsolution]
bb5=Im[ffffsolution]
vva=Round[f]
vv1=Round[ff]
bba=Round[fff]
vvc=Round[ffff]
vvb=Round[ffffsolution]
vv=Round[fsolution]
g=2*Pi*(r+f)
gg=2*Pi*r
rr=(z-z*Power[z, (z)^-1])*2*n3
s1c=((1/2)+bb*r*Sqrt[-1])
s1cc=(((1)+bb*r*Sqrt[-1])+((0)+bb*r*Sqrt[-1]))/2
s1b=((1/2)+fsolution*bb4)
s1=(1/2)+fsolution*r
ss1=(1/2)+fsolution*r*Sqrt[-1]
ss2=(1/2)+bb1*r*Sqrt[-1]
ssss1=(1/2)+ff*r
ssss1b=((1/2)+bb2*r*Sqrt[-1])/-2
sss2=Re[ssss1]
ss3=(1/2)+fff*r*Sqrt[-1]
ssss=(1/2)+fff*r
sssa=(1/2)+cc2*Sqrt[-1*-n3]
sssab=(1/2)+cc2b*Sqrt[-1*-n3]
sssb=((1/2)+ffffsolution*r)/-2
sssb1=((1/2)+bb5*Sqrt[r*-1])/-2
sssc=(1/2)+ffff*r*Sqrt[-1]
sss3=Re[ssss]
s=ReIm[s1]
s2=ReIm[ss1]
sa=ReIm[ssss1]
sb=ReIm[ssss]
sc=ReIm[sssa]
sd=ReIm[sssb]
se=ReIm[sssc]
s2=(1/2)+vvc*r*Sqrt[-1]
zz=-n3
zx=n
x1c1c=\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(zx = 100000\), \(100100\)]\(1/zx*zx^s1cc\)\)
x=ReIm[x1c1c]
x1cc1=Re[x1c1c]
x1cc2=Im[x1c1c]
ListLinePlot[x1cc]
Manipulate[
 ParametricPlot[{r Cos[x],  r Sin[x]}, {x, 1, m}, {r, 0, k}, 
  Mesh -> Full, PlotRange -> {{-2, 2}, {-2, 2}}], {m, 0, 5 Pi}, {k, 1,
   3}]

As the numbers increase new patterns emerge:

x1c1c=\!\(
\*UnderoverscriptBox[\(\[Sum]\), \(zx = 1000000000000\), \(1000000000100\)]\(1/zx*zx^s1cc\)\)!

At high numbers:

Real part and imaginary part are complementary:

real part

imaginary part

The graph at the begining is like thisenter image description here

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract