WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Wolfram Science
Physics
Group Theory
Wolfram Language
Wolfram Summer School
Wolfram Function Repository
2
Chang Wu
[WWS21] Exploring the gauge symmetries in Wolfram Model
Chang Wu, Department of Physics, Technion, Israel Institute of Technology
Posted
3 months ago
505 Views
|
0 Replies
|
2 Total Likes
Follow this post
|
Exploring the gauge symmetries in Wolfram Model
Chang Wu
Institut für Theoretische Physik, Georg-August-Universität Göttingen
According to the previous project “Full Discretization of Local Gauge Invariance”, the discrete gauge invariance techniques were previously developed [1]. Therefore, continue exploring the symmetry and related to some known physics in QFT and QM is interesting.
In order to study the gauge symmetries with the wolfram model, we need to reproduce a function like “QuantumToMultiwaySystem”, but instead of each state vertex being a pure state, each state vertex would now be a configuration of a field over one-dimensional lattice, with the evolution rules being some discrete approximation to the equation of motion, such as Klein-Gordon equation for the scalar field.
As a first step, we use the “QuantumToMultiwaySystem” [2] to study a few well known operators, such as the Pauli and Gell-Mann matrices. And apply it to calculate the colour factor in QCD.
A First Example
As a first example we study a simple operator which create a superposition of basis state. It has the matrix:
H
1
1
1
-
1
,
This operator is called as Hadamard gate in quantum computing [3], apply it to one of the basis gives
H
0
〉
0
〉
+
1
〉
.
H
1
〉
0
〉
-
1
〉
.
Therefore, we could apply the “QuantumToMultiwaySystem”, which gives the evolution graph as
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
{
{
1
,
1
}
,
{
1
,
-
1
}
}
,
"
B
a
s
i
s
"
{
{
1
,
0
}
,
{
0
,
1
}
}
|
>
,
{
1
,
1
}
,
2
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
F
u
l
l
"
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
,
A
s
p
e
c
t
R
a
t
i
o
0
.
5
]
O
u
t
[
]
=
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
{
{
1
,
1
}
,
{
1
,
-
1
}
}
,
"
B
a
s
i
s
"
{
{
1
,
0
}
,
{
0
,
1
}
}
|
>
,
{
1
,
1
}
,
2
,
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
]
O
u
t
[
]
=
This simple operator can be decomposed into a linear combination of Pauli matrices
H
σ
1
+
σ
3
,
where the Pauli matrices are usually taken in the form
σ
1
0
1
1
0
,
σ
2
0
-
i
i
0
,
σ
3
1
0
0
-
1
“ 4-dimensional” Pauli Matrices
It is also possible to construct the Hilbert space for systems containing 2 spin systems, for example spinors in relativistic quantum mechanics. Using the tensor product of each vector, we have
{
0
〉
,
1
〉
}
×
{
0
〉
,
1
〉
}
{
0
0
〉
,
0
1
〉
,
1
0
〉
,
1
1
〉
}
,
which the matrix representation are
Similarly, we could construct the “ 4-dimensional” Pauli Matrices
Σ
σ
1
+
σ
2
,
for simplicity, we only collect the result below:
Σ
x
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
,
Σ
y
0
-
i
-
i
0
i
0
0
-
i
i
0
0
-
i
0
i
i
0
,
Σ
z
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
2
which is easy to varify the commutation relations, for example:
I
n
[
]
:
=
s
i
g
m
a
x
=
{
{
0
,
1
,
1
,
0
}
,
{
1
,
0
,
0
,
1
}
,
{
1
,
0
,
0
,
1
}
,
{
0
,
1
,
1
,
0
}
}
;
s
i
g
m
a
y
=
{
{
0
,
-
I
,
-
I
,
0
}
,
{
I
,
0
,
0
,
-
I
}
,
{
I
,
0
,
0
,
-
I
}
,
{
0
,
I
,
I
,
0
}
}
;
s
i
g
m
a
x
.
s
i
g
m
a
y
-
s
i
g
m
a
y
.
s
i
g
m
a
x
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
]
/
/
M
a
t
r
i
x
F
o
r
m
=
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
4
Thus, we can apply the “QuantumToMultiwaySystem” to study
Σ
x
act on the basis states
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
s
i
g
m
a
x
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
1
}
}
|
>
,
{
1
,
0
,
0
,
0
}
,
3
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
F
u
l
l
"
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
,
A
s
p
e
c
t
R
a
t
i
o
0
.
8
]
O
u
t
[
]
=
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
s
i
g
m
a
x
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
1
}
}
|
>
,
{
1
,
0
,
0
,
0
}
,
4
,
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
]
O
u
t
[
]
=
The “total spin” S can be identified from the eigenvalue of the operator, where in Multiway system, the eigenvalue can be obtained from the vertex weight
2
Σ
2
0
1
1
0
1
0
0
1
1
0
0
1
0
1
1
0
+
2
0
-
i
-
i
0
i
0
0
-
i
i
0
0
-
i
0
i
i
0
+
2
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-
2
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
{
{
8
,
0
,
0
,
0
}
,
{
0
,
4
,
4
,
0
}
,
{
0
,
4
,
4
,
0
}
,
{
0
,
0
,
0
,
8
}
}
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
1
}
}
|
>
,
{
1
,
0
,
0
,
0
}
,
1
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
F
u
l
l
"
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
]
O
u
t
[
]
=
T
h
e
4
×
4
m
a
t
r
i
x
o
p
e
r
a
t
o
r
Σ
c
a
n
a
l
s
o
f
o
r
m
e
d
i
n
o
t
h
e
r
4
-
d
i
m
r
e
p
r
e
s
e
n
t
a
t
i
o
n
,
s
u
c
h
a
s
Σ
σ
0
0
σ
I
n
[
]
:
=
s
i
g
m
a
2
x
=
{
{
0
,
1
,
0
,
0
}
,
{
1
,
0
,
0
,
0
}
,
{
0
,
0
,
0
,
1
}
,
{
0
,
0
,
1
,
0
}
}
;
s
i
g
m
a
2
y
=
{
{
0
,
-
I
,
0
,
0
}
,
{
I
,
0
,
0
,
0
}
,
{
0
,
0
,
0
,
-
I
}
,
{
0
,
0
,
I
,
0
}
}
;
s
i
g
m
a
2
z
=
{
{
1
,
0
,
0
,
0
}
,
{
0
,
-
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
-
1
}
}
;
s
i
g
m
a
2
x
.
s
i
g
m
a
2
y
-
s
i
g
m
a
2
y
.
s
i
g
m
a
2
x
/
/
M
a
t
r
i
x
F
o
r
m
O
u
t
[
]
/
/
M
a
t
r
i
x
F
o
r
m
=
2
0
0
0
0
-
2
0
0
0
0
2
0
0
0
0
-
2
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
s
i
g
m
a
2
x
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
1
}
}
|
>
,
{
1
,
1
,
1
,
1
}
,
4
,
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
]
O
u
t
[
]
=
Moreover, the Dirac–Pauli representation is useful to express the Dirac equation in covariant form
i
μ
γ
∂
μ
-
m
ψ
0
,
w
h
e
r
e
t
h
e
γ
m
a
t
r
i
c
e
s
a
r
e
0
γ
I
0
0
-
I
,
i
γ
0
σ
-
σ
0
I
n
[
]
:
=
s
i
g
m
a
3
=
{
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
,
{
0
,
0
,
-
1
,
0
}
,
{
0
,
0
,
0
,
-
1
}
}
;
s
i
g
m
a
3
x
=
{
{
0
,
0
,
0
,
1
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
-
1
,
0
,
0
}
,
{
-
1
,
0
,
0
,
0
}
}
;
s
i
g
m
a
3
y
=
{
{
0
,
0
,
0
,
-
I
}
,
{
0
,
0
,
I
,
0
}
,
{
0
,
I
,
0
,
0
}
,
{
-
I
,
0
,
0
,
0
}
}
;
s
i
g
m
a
3
z
=
{
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
-
1
}
,
{
-
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
}
;
s
i
g
m
a
3
x
.
s
i
g
m
a
3
z
-
s
i
g
m
a
3
z
.
s
i
g
m
a
3
x
/
/
M
a
t
r
i
x
F
o
r
m
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
s
i
g
m
a
3
x
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
,
0
}
,
{
0
,
1
,
0
,
0
}
,
{
0
,
0
,
1
,
0
}
,
{
0
,
0
,
0
,
1
}
}
|
>
,
{
1
,
1
,
1
,
1
}
,
4
,
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
]
O
u
t
[
]
=
Gell-Mann Matrices
Start from the QCD Lagrangian, where the color is described by the local gauge transformations with respect to color SU(3) group
ψ
(
x
)
i
α
a
(
x
)
a
t
e
ψ
(
x
)
,
and similar to QED case, we could introduce the covariant derivative
D
μ
∂
μ
-
i
g
a
t
a
A
μ
(
x
)
w
h
e
r
e
a
A
μ
(
x
)
i
s
t
h
e
g
a
u
g
e
(
g
l
u
o
n
)
f
i
e
l
d
s
,
t
r
a
n
s
f
e
r
a
s
a
A
μ
(
x
)
a
A
μ
(
x
)
-
1
g
∂
μ
a
α
(
x
)
-
a
b
c
f
b
α
(
x
)
c
A
μ
(
x
)
One the other hand, one can also start by describe a quark as Dirac spinor
u
(
p
)
plus a colour D.O.F. described by a column colour vector:
r
1
0
0
,
b
0
1
0
,
r
0
0
1
And mathematically, quark colour transforms under the fundamental representation, while gluon responsible for exchanging momentum and colour between quarks, are transfer under the adjoint representation of SU(3), which are described by the Gell-Mann matrices
I
n
[
]
:
=
l
a
m
b
d
a
1
=
{
{
0
,
1
,
0
}
,
{
1
,
0
,
0
}
,
{
0
,
0
,
0
}
}
;
(
*
l
a
m
b
d
a
1
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
2
=
{
{
0
,
-
I
,
0
}
,
{
I
,
0
,
0
}
,
{
0
,
0
,
0
}
}
;
(
*
l
a
m
b
d
a
2
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
3
=
{
{
1
,
0
,
0
}
,
{
0
,
-
1
,
0
}
,
{
0
,
0
,
0
}
}
;
(
*
l
a
m
b
d
a
3
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
4
=
{
{
0
,
0
,
1
}
,
{
0
,
0
,
0
}
,
{
1
,
0
,
0
}
}
;
(
*
l
a
m
b
d
a
4
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
5
=
{
{
0
,
0
,
-
I
}
,
{
0
,
0
,
0
}
,
{
I
,
0
,
0
}
}
;
(
*
l
a
m
b
d
a
5
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
6
=
{
{
0
,
0
,
0
}
,
{
0
,
0
,
1
}
,
{
0
,
1
,
0
}
}
;
(
*
l
a
m
b
d
a
6
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
7
=
{
{
0
,
0
,
0
}
,
{
0
,
0
,
-
I
}
,
{
0
,
I
,
0
}
}
;
(
*
l
a
m
b
d
a
7
/
/
M
a
t
r
i
x
F
o
r
m
*
)
l
a
m
b
d
a
8
=
{
{
1
,
0
,
0
}
,
{
0
,
1
,
0
}
,
{
0
,
0
,
-
2
}
}
/
S
q
r
t
[
3
]
;
(
*
l
a
m
b
d
a
8
/
/
M
a
t
r
i
x
F
o
r
m
*
)
T
a
b
L
=
{
l
a
m
b
d
a
1
,
l
a
m
b
d
a
2
,
l
a
m
b
d
a
3
,
l
a
m
b
d
a
4
,
l
a
m
b
d
a
5
,
l
a
m
b
d
a
6
,
l
a
m
b
d
a
7
,
S
q
r
t
[
3
]
l
a
m
b
d
a
8
}
;
There are 8 independent color states, and one colour singlet state, as
3
×
3
8
+
1
for SU(3). For example:
1
λ
0
1
0
1
0
0
0
0
0
r
b
+
b
r
The Gell-Mann matrices are one possible representation of the infinitesimal generators of the special unitary group called SU(3), and we can use the Multiway system to study it’s eigenstate. For example
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
T
a
b
L
[
[
8
]
]
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
}
,
{
0
,
1
,
0
}
,
{
0
,
0
,
1
}
}
|
>
,
{
1
,
1
,
1
}
,
2
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
F
u
l
l
"
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
,
E
d
g
e
L
a
b
e
l
s
"
E
d
g
e
W
e
i
g
h
t
"
,
A
s
p
e
c
t
R
a
t
i
o
0
.
5
]
O
u
t
[
]
=
Colour Factor
T
h
e
G
e
l
l
-
M
a
n
n
m
a
t
r
i
c
e
s
i
s
u
s
e
f
u
l
i
n
s
c
a
t
t
e
r
i
n
g
t
h
e
o
r
y
.
F
o
r
e
x
a
m
p
l
e
:
a
t
t
r
e
e
l
e
v
e
l
,
t
h
e
a
m
p
l
i
t
u
d
e
c
a
n
b
e
d
e
c
o
m
p
o
s
e
d
a
s
[
4
]
M
(
n
g
)
∑
p
e
r
m
(
2
,
⋯
,
n
)
T
r
(
a
1
λ
a
n
⋯
λ
)
A
(
1
⋯
n
)
H
e
r
e
,
w
e
u
s
e
t
h
e
q
q
q
q
s
c
a
t
t
e
r
i
n
g
p
r
o
c
e
s
s
t
o
s
t
u
d
y
t
h
i
s
c
o
l
o
u
r
d
e
c
o
m
p
o
s
i
t
i
o
n
.
T
o
w
r
i
t
e
d
o
w
n
t
h
e
m
a
t
r
i
x
e
l
e
m
e
n
t
,
w
e
n
e
e
d
t
o
u
s
i
n
g
t
h
e
F
e
y
n
m
a
n
r
u
l
e
a
n
d
f
o
l
l
o
w
t
h
e
f
e
r
m
i
o
n
s
a
r
r
o
w
b
a
c
k
w
a
r
d
s
M
2
g
s
2
q
a
λ
j
i
a
λ
k
l
4
[
u
j
μ
γ
u
i
]
[
u
k
ν
γ
u
l
]
T
h
i
s
m
a
t
r
i
x
e
l
e
m
e
n
t
i
s
s
i
m
i
l
a
r
t
o
e
l
e
c
t
r
o
m
a
g
n
e
t
i
c
s
c
a
t
t
e
r
i
n
g
e
x
c
e
p
t
t
h
e
s
t
r
o
n
g
c
o
u
p
l
i
n
g
c
o
n
s
t
a
n
t
,
i
.
e
.
e
g
s
,
a
n
d
t
h
e
a
d
d
i
t
i
o
n
t
e
r
m
a
λ
j
i
a
λ
k
l
4
c
a
l
l
e
d
a
s
c
o
l
o
u
r
f
a
c
t
o
r
,
w
h
e
r
e
a
λ
k
l
†
c
k
a
λ
c
l
a
n
d
c
i
i
s
t
h
e
c
o
l
o
u
r
v
e
c
t
o
r
,
i
.
e
.
r
,
g
,
b
.
M
o
r
e
o
v
e
r
,
w
e
c
o
u
l
d
d
e
f
i
n
e
t
h
e
c
o
l
o
u
r
f
a
c
t
o
r
a
s
f
a
λ
j
i
a
λ
k
l
4
.
T
h
e
n
,
i
n
t
h
e
l
o
w
e
s
t
o
r
d
e
r
a
p
p
r
o
x
i
m
a
t
i
o
n
,
t
h
e
d
y
n
a
m
i
c
s
o
f
q
\
b
a
r
{
q
}
i
s
t
h
e
s
a
m
e
a
s
+
e
-
e
s
c
a
t
t
e
r
i
n
g
,
w
h
e
r
e
t
h
e
C
o
l
o
u
m
b
-
l
i
k
e
p
o
t
e
n
t
i
a
l
i
s
V
q
q
-
f
α
s
r
I
n
o
r
d
e
r
t
o
c
a
l
c
u
l
a
t
e
t
h
e
c
o
l
o
u
r
f
a
c
t
o
r
,
w
e
c
h
o
o
s
e
c
o
l
o
u
r
s
f
o
r
q
a
n
d
q
.
A
n
d
t
h
e
t
h
e
o
r
y
i
s
i
n
v
a
r
i
a
n
t
u
n
d
e
r
r
o
t
a
t
i
o
n
s
i
n
c
o
l
o
u
r
s
p
a
c
e
,
t
h
u
s
a
n
y
c
h
o
i
c
e
o
f
c
o
l
o
u
r
s
w
i
l
l
g
i
v
e
t
h
e
s
a
m
e
a
n
s
w
e
r
.
F
o
r
t
h
i
s
p
r
o
c
e
s
s
,
w
e
h
a
v
e
t
h
r
e
e
c
o
l
o
u
r
o
p
t
i
o
n
s
,
i
.
e
.
r
r
r
r
,
r
b
r
b
a
n
d
r
r
b
b
.
T
h
u
s
w
e
h
a
v
e
f
1
1
4
∑
a
a
λ
1
1
a
λ
1
1
,
f
2
1
4
∑
a
a
λ
1
1
a
λ
2
2
,
f
3
1
4
∑
a
a
λ
2
1
a
λ
1
2
N
o
w
,
i
n
o
r
d
e
r
t
o
o
b
t
a
i
n
t
h
e
m
a
t
r
i
c
e
s
w
i
t
h
n
o
n
-
z
e
r
o
e
l
e
m
e
n
t
,
w
e
c
a
n
a
p
p
l
y
t
h
e
M
u
l
t
i
w
a
y
s
y
s
t
e
m
t
o
t
h
e
G
e
l
l
-
M
a
n
n
m
a
t
r
i
c
e
s
:
I
n
[
]
:
=
T
a
b
l
e
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
T
a
b
L
[
[
n
]
]
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
}
,
{
0
,
1
,
0
}
,
{
0
,
0
,
1
}
}
|
>
,
{
1
,
1
,
1
}
,
1
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
F
u
l
l
"
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
,
A
s
p
e
c
t
R
a
t
i
o
1
]
,
{
n
,
1
,
8
}
]
O
u
t
[
]
=
,
,
,
,
,
,
,
I
n
[
]
:
=
T
a
b
l
e
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
T
a
b
L
[
[
n
]
]
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
}
,
{
0
,
1
,
0
}
,
{
0
,
0
,
1
}
}
|
>
,
{
1
,
1
,
1
}
,
1
,
"
E
v
o
l
u
t
i
o
n
C
a
u
s
a
l
G
r
a
p
h
"
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
,
A
s
p
e
c
t
R
a
t
i
o
1
]
,
{
n
,
1
,
8
}
]
O
u
t
[
]
=
,
,
,
,
,
,
,
I
n
[
]
:
=
T
a
b
l
e
[
V
e
r
t
e
x
L
i
s
t
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
Q
u
a
n
t
u
m
T
o
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
<
|
"
O
p
e
r
a
t
o
r
"
T
a
b
L
[
[
n
]
]
,
"
B
a
s
i
s
"
{
{
1
,
0
,
0
}
,
{
0
,
1
,
0
}
,
{
0
,
0
,
1
}
}
|
>
,
{
1
,
1
,
0
}
,
1
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
F
u
l
l
"
]
]
[
[
2
]
]
[
[
2
]
]
,
{
n
,
1
,
8
}
]
O
u
t
[
]
=
{
{
0
,
1
,
0
}
,
{
0
,
I
,
0
}
,
{
0
,
-
1
,
0
}
,
{
0
,
0
,
1
}
,
{
0
,
0
,
I
}
,
{
0
,
0
,
1
}
,
{
0
,
0
,
I
}
,
{
0
,
1
,
0
}
}
W
h
e
r
e
t
h
e
o
n
l
y
n
o
n
-
z
e
r
o
r
e
s
u
l
t
f
o
r
f
1
a
n
d
f
2
,
i
.
e
.
a
λ
1
1
a
n
d
a
λ
2
2
a
r
e
3
λ
a
n
d
8
λ
.
A
n
d
w
e
c
a
n
g
e
t
t
h
e
e
i
g
e
n
v
a
l
u
e
f
r
o
m
t
h
e
v
e
r
t
e
x
w
e
i
g
h
t
.
T
h
u
s
w
e
h
a
v
e
f
1
1
4
(
1
)
(
1
)
+
1
3
1
3
1
3
a
n
d
f
2
1
4
(
1
)
(
-
1
)
+
1
3
1
3
-
1
6
S
i
m
i
l
a
r
l
y
,
t
h
e
o
n
l
y
m
a
t
r
i
c
e
s
w
i
t
h
n
o
n
-
z
e
r
o
e
l
e
m
e
n
t
f
o
r
f
3
a
r
e
1
λ
a
n
d
2
λ
.
T
h
e
r
e
f
o
r
e
,
t
h
e
r
e
s
u
l
t
r
e
a
d
a
s
f
3
1
4
[
(
-
i
)
(
i
)
+
(
1
)
(
1
)
]
1
2
A
g
a
i
n
,
w
e
c
a
n
c
o
m
p
a
r
e
t
o
t
h
e
+
e
-
e
p
o
t
e
n
t
i
a
l
,
w
h
e
r
e
t
h
e
m
i
n
u
s
s
i
g
n
i
n
d
i
c
a
t
e
i
t
i
s
r
e
p
u
l
s
i
v
e
.
F
u
r
t
h
e
r
m
o
r
e
,
w
e
c
o
u
l
d
a
l
s
o
a
p
p
l
y
t
o
t
h
e
c
o
l
o
u
r
s
i
n
g
l
e
t
c
a
s
e
f
o
r
b
o
t
h
o
u
t
-
g
o
i
n
g
a
n
d
i
n
-
c
o
m
i
n
g
q
a
n
d
q
a
s
1
3
r
r
+
b
b
+
g
g
T
h
e
c
o
l
o
u
r
f
a
c
t
o
r
c
a
n
b
e
o
b
t
a
i
n
e
d
a
s
f
1
1
2
∑
a
T
r
(
a
λ
a
λ
)
=
4
/
3
,
w
h
i
c
h
i
s
k
n
o
w
n
a
s
S
U
(
3
)
q
u
a
d
r
a
t
i
c
C
a
s
i
m
i
r
.
Next Step
In this post, we have applied the Multiway system to study the QCD colour factor, where the higher-dimensional colour representation [5] is important to study the sub-leading colour effects. Therefore, we could continue developing this package and applying it to some processes with more complicated colour structure.
For a more interesting direction, we could develop a new function similar to the “QuantumToMultiwaySystem”, but each state vertex is replaced by a real scalar field over one-dimensional lattice structure, for example, the 1-dim Ising model. The Ising Model is a model of spins on a lattice with nearest-neighbor interactions. [6]
From the point of view in Wilsonian effective field theory, we can zoom out by ‘integrating out’ half of the spins on the lattice, which leaves a new effective theory for the remainder. Thus, at long distance the model is described by the QFT with action
S
d
d
x
1
2
2
(
∂
ϕ
)
-
2
λ
ϕ
In Multiway system, the Ising model have been studied with the string substitution systems [7]. For example:
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
M
u
l
t
i
w
a
y
S
y
s
t
e
m
"
]
[
{
"
A
"
"
A
B
"
,
"
B
"
"
B
A
"
}
,
"
A
"
,
5
,
"
B
r
a
n
c
h
i
a
l
G
r
a
p
h
"
]
O
u
t
[
]
=
Moreover, the ultimate goal would be looking an alternate way for spontaneous symmetry-breaking that arise from the discreteness of the lattice over which the scalar field is defined, where the EOM is the discretized Klein-Gordon equation with wavefunctions replaced by operators acting on states, analogous to the generation of Goldstone bosons.
Keywords
◼
Multiway System
◼
Gauge Symmetries
◼
Pauli and Gell-Mann Matrices
◼
SU(3) quadratic Casimir
Acknowledgment
Mentor
: Jon Lederman
The author would like to thank Jon Lederman,
Jonathan Gorard, Xerxes D. Arsiwalla, and Stephan Wolfram for the useful discussions, and especially thank Xerxes D. Arsiwalla for pointed a possible new direction for this project.
References
◼
[1] https://community.wolfram.com/groups/-/m/t/2030337
◼
[2] https://resources.wolframcloud.com/FunctionRepository/resources/QuantumToMultiwaySystem
◼
[3] https://en.wikipedia.org/wiki/Quantum_logic_gate#Hadamard_(H)_gate
◼
[4] M. L. Mangano, S. J. Parke, and Z. Xu, “Duality and Multi - Gluon Scattering,” Nucl. Phys. B, vol. 298, pp. 653–672, 1988.
◼
[5] Y. Bao and A. J. Larkoski, Calculating Pull for Non-Singlet Jets, arXiv:1910.02085.
◼
[6] Jared Kaplan - QFT Lectures Notes
◼
[7] https://community.wolfram.com/groups/-/m/t/2029608
POSTED BY:
Chang Wu
Answer
Mark as an Answer
Reply
|
Flag
Reply to this discussion
in reply to
Add Notebook
Community posts can be styled and formatted using the
Markdown syntax
.
Tag limit exceeded
Note: Only the first five people you tag will receive an email notification; the other tagged names will appear as links to their profiles.
Publish anyway
Cancel
Reply Preview
Attachments
Remove
Add a file to this post
Follow this discussion
or
Discard
Group Abstract
Be respectful. Review our
Community Guidelines
to understand your role and responsibilities.
Community Terms of Use
Feedback
Enable JavaScript to interact with content and submit forms on Wolfram websites.
Learn how »