WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Search
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Wolfram Science
Physics
Graphics and Visualization
Graphs and Networks
Wolfram Language
Wolfram Summer School
Wolfram Function Repository
3
Sourav Raha
[WWS21] Hypergraphs as chains of string bits
Sourav Raha
Posted
1 month ago
715 Views
|
0 Replies
|
3 Total Likes
Follow this post
|
Gauge multiplets to lightcone strings
Sourav Raha
University of Florida
Abstract: In this project, we use hypergraphs to represent the color lines of a quantum system that has adjoint matter. We derive the replacement rules corresponding to the action of a quartic Hamiltonian. We discuss the supersymmetric extension of this formalism and how it is related to lightcone quantized strings.
Introduction
T
h
e
s
i
m
p
l
e
s
t
n
o
n
-
t
r
i
v
i
a
l
o
p
e
r
a
t
i
o
n
i
n
q
u
a
n
t
u
m
m
e
c
h
a
n
i
c
s
i
s
t
h
e
c
o
m
m
u
t
a
t
o
r
:
A
B
-
B
A
I
t
i
s
t
h
e
c
o
r
n
e
r
s
t
o
n
e
o
f
H
e
i
s
e
n
b
e
r
g
’
s
u
n
c
e
r
t
a
i
n
t
y
p
r
i
n
c
i
p
l
e
.
I
t
a
l
s
o
c
o
m
e
s
i
n
h
a
n
d
y
f
o
r
c
o
n
s
t
r
u
c
t
i
n
g
t
h
e
e
i
g
e
n
v
a
l
u
e
s
o
f
t
h
e
q
u
a
n
t
u
m
h
a
r
m
o
n
i
c
o
s
c
i
l
l
a
t
o
r
w
h
e
r
e
t
h
e
l
a
d
d
e
r
o
p
e
r
a
t
o
r
s
s
a
t
i
s
f
y
[
a
,
a
]
1
I
n
t
h
e
o
p
e
r
a
t
o
r
f
o
r
m
a
l
i
s
m
,
t
h
e
m
a
t
r
i
x
e
l
e
m
e
n
t
s
o
f
a
n
y
q
u
a
n
t
u
m
o
p
e
r
a
t
o
r
c
a
n
b
e
w
r
i
t
t
e
n
a
s
<
0
|
…
a
a
…
a
a
…
a
a
…
a
a
…
|
0
>
I
f
t
h
e
g
r
o
u
n
d
s
t
a
t
e
i
s
n
o
r
m
a
l
i
z
e
d
,
c
o
m
p
u
t
i
n
g
s
u
c
h
e
l
e
m
e
n
t
s
i
s
e
q
u
i
v
a
l
e
n
t
t
o
r
e
p
e
a
t
e
d
a
p
p
l
i
c
a
t
i
o
n
s
o
f
t
h
e
c
o
m
m
u
t
a
t
o
r
r
e
l
a
t
i
o
n
o
f
t
h
e
l
a
d
d
e
r
o
p
e
r
a
t
o
r
s
.
T
h
i
s
c
a
n
p
u
s
h
a
l
l
t
h
e
a
n
n
i
h
i
l
a
t
i
o
n
o
p
e
r
a
t
o
r
s
t
o
t
h
e
r
i
g
h
t
o
f
a
l
l
t
h
e
c
r
e
a
t
i
o
n
o
p
e
r
a
t
o
r
s
.
T
h
i
s
i
s
r
e
f
e
r
r
e
d
t
o
a
s
n
o
r
m
a
l
o
r
d
e
r
i
n
g
i
n
l
i
t
e
r
a
t
u
r
e
.
Normal ordering
We might use string substitution systems to implement normal ordering. For example, we show how a an expression like
a
a
a
a
a
a
a
a
can be normal ordered
[
◼
]
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
"
a
A
"
"
"
,
"
a
A
"
"
A
a
"
(
*
,
"
b
B
"
"
"
,
"
b
B
"
"
B
b
"
,
"
a
B
"
"
B
a
"
,
"
b
A
"
"
A
b
"
*
)
}
(
{
S
e
l
e
c
t
F
i
r
s
t
[
#
,
F
i
r
s
t
[
#
]
=
=
(
"
a
A
"
"
"
)
&
]
,
S
e
l
e
c
t
F
i
r
s
t
[
#
,
F
i
r
s
t
[
#
]
=
=
(
"
a
A
"
"
A
a
"
)
&
]
}
&
)
,
"
a
a
A
A
a
a
A
A
"
,
9
0
,
"
S
t
a
t
e
s
G
r
a
p
h
"
(
*
,
"
E
v
o
l
u
t
i
o
n
G
r
a
p
h
"
*
)
(
*
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
*
)
]
O
u
t
[
]
=
One can see that the normal ordering produces 4 distinct terms in the end: including an empty (vacuum) state. One question could be: how to obtain operator subsequences that simplify to the vacuum? The following multiway system shows how this can be achieved:
I
n
[
]
:
=
[
◼
]
M
u
l
t
i
w
a
y
S
y
s
t
e
m
[
{
"
"
"
a
A
"
,
"
A
a
"
"
a
A
"
(
*
,
"
b
B
"
"
"
,
"
b
B
"
"
B
b
"
,
"
a
B
"
"
B
a
"
,
"
b
A
"
"
A
b
"
*
)
}
,
"
"
,
3
,
"
S
t
a
t
e
s
G
r
a
p
h
"
(
*
,
"
I
n
c
l
u
d
e
S
t
a
t
e
P
a
t
h
W
e
i
g
h
t
s
"
T
r
u
e
,
V
e
r
t
e
x
L
a
b
e
l
s
"
V
e
r
t
e
x
W
e
i
g
h
t
"
*
)
]
O
u
t
[
]
=
The leftmost sequences would correspond to the norms of the oscillator eigenstates.
S
t
r
i
n
g
J
o
i
n
@
@
@
T
u
p
l
e
s
[
{
"
A
"
,
"
B
"
}
,
2
]
T
o
L
o
w
e
r
C
a
s
e
/
@
%
O
u
t
e
r
[
S
t
r
i
n
g
J
o
i
n
,
%
,
%
%
]
O
u
t
[
]
=
{
A
A
,
A
B
,
B
A
,
B
B
}
O
u
t
[
]
=
{
a
a
,
a
b
,
b
a
,
b
b
}
O
u
t
[
]
=
{
{
a
a
A
A
,
a
a
A
B
,
a
a
B
A
,
a
a
B
B
}
,
{
a
b
A
A
,
a
b
A
B
,
a
b
B
A
,
a
b
B
B
}
,
{
b
a
A
A
,
b
a
A
B
,
b
a
B
A
,
b
a
B
B
}
,
{
b
b
A
A
,
b
b
A
B
,
b
b
B
A
,
b
b
B
B
}
}
Adjoint multiplets
H
o
w
e
v
e
r
,
o
n
e
c
o
u
l
d
a
s
k
:
h
o
w
t
o
d
e
a
l
w
i
t
h
s
i
t
u
a
t
i
o
n
s
w
h
e
r
e
t
h
e
p
a
r
t
i
c
l
e
i
s
a
m
u
l
t
i
p
l
e
t
o
f
s
o
m
e
i
n
t
e
r
n
a
l
d
e
g
r
e
e
o
f
f
r
e
e
d
o
m
?
S
t
r
i
n
g
s
u
b
s
t
i
t
u
t
i
o
n
s
y
s
t
e
m
s
d
o
n
o
t
h
a
v
e
t
h
e
p
o
w
e
r
t
o
c
a
p
t
u
r
e
s
u
c
h
e
x
t
r
a
d
e
g
r
e
e
s
o
f
f
r
e
e
d
o
m
.
F
o
r
e
x
a
m
p
l
e
,
w
e
m
i
g
h
t
h
a
v
e
a
d
j
o
i
n
t
m
u
l
t
i
p
l
e
t
s
μ
a
ν
,
ρ
a
σ
μ
δ
σ
ρ
δ
ν
w
h
e
r
e
μ
,
ν
a
r
e
‘
c
o
l
o
r
’
i
n
d
i
c
e
s
a
n
d
t
a
k
e
v
a
l
u
e
s
f
r
o
m
1
…
N
.
I
n
t
h
a
t
c
a
s
e
,
w
e
l
e
v
e
r
a
g
e
t
h
e
p
o
w
e
r
o
f
h
y
p
e
r
g
r
a
p
h
s
.
T
h
e
h
y
p
e
r
g
r
a
p
h
s
r
e
p
r
e
s
e
n
t
t
h
e
s
t
a
t
e
o
f
a
s
y
s
t
e
m
,
w
i
t
h
e
a
c
h
e
x
p
r
e
s
s
i
o
n
r
e
p
r
e
s
e
n
t
i
n
g
a
c
o
l
o
r
l
i
n
e
a
n
d
t
h
e
a
t
o
m
s
r
e
p
r
e
s
e
n
t
i
n
g
t
h
e
o
p
e
r
a
t
o
r
s
t
h
a
t
s
h
a
r
e
a
p
a
r
t
i
c
u
l
a
r
c
o
l
o
r
i
n
d
e
x
(
i
.
e
.
t
h
e
c
o
l
o
r
i
n
d
e
x
i
s
c
o
n
t
r
a
c
t
e
d
b
e
t
w
e
e
n
t
h
e
t
w
o
o
p
e
r
a
t
o
r
s
)
.
H
e
r
e
w
e
r
e
p
r
e
s
e
n
t
a
n
i
n
i
t
i
a
l
s
t
a
t
e
t
h
a
t
r
e
p
r
e
s
e
n
t
s
a
s
i
n
g
l
e
t
r
a
c
e
s
t
a
t
e
o
f
1
0
p
a
r
t
i
c
l
e
s
t
r
1
0
a
|
0
>
I
n
[
]
:
=
<
<
S
e
t
R
e
p
l
a
c
e
`
T
o
E
x
p
r
e
s
s
i
o
n
[
"
A
"
<
>
T
o
S
t
r
i
n
g
[
#
]
]
&
/
@
R
a
n
g
e
[
1
0
]
;
T
o
E
x
p
r
e
s
s
i
o
n
[
"
c
"
<
>
T
o
S
t
r
i
n
g
[
#
]
]
&
/
@
R
a
n
g
e
[
1
0
]
;
i
n
i
t
=
J
o
i
n
[
{
R
o
t
a
t
e
R
i
g
h
t
[
%
%
]
}
,
{
%
}
,
{
%
%
}
]
/
/
T
r
a
n
s
p
o
s
e
H
y
p
e
r
g
r
a
p
h
P
l
o
t
[
i
n
i
t
,
V
e
r
t
e
x
L
a
b
e
l
s
A
u
t
o
m
a
t
i
c
]
O
u
t
[
]
=
{
{
a
1
0
,
c
1
,
a
1
}
,
{
a
1
,
c
2
,
a
2
}
,
{
a
2
,
c
3
,
a
3
}
,
{
a
3
,
c
4
,
a
4
}
,
{
a
4
,
c
5
,
a
5
}
,
{
a
5
,
c
6
,
a
6
}
,
{
a
6
,
c
7
,
a
7
}
,
{
a
7
,
c
8
,
a
8
}
,
{
a
8
,
c
9
,
a
9
}
,
{
a
9
,
c
1
0
,
a
1
0
}
}
O
u
t
[
]
=
The simplest non-trivial Hamiltonian is the one with a quartic interaction:
t
r
a
a
a
a
This term annihilates two quanta followed by creation of two quanta. The application of this Hamiltonian does not change the total number of particles. All it does is to identify certain color indices. Its action has been implemented using the following set of rules:
I
n
[
]
:
=
e
v
o
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
<
|
"
P
a
t
t
e
r
n
R
u
l
e
s
"
{
{
{
c
1
_
_
,
a
1
_
}
,
{
a
1
_
,
c
2
_
_
}
,
{
c
3
_
_
,
a
2
_
}
,
{
a
2
_
,
c
4
_
_
}
}
M
o
d
u
l
e
[
{
w
,
b
1
,
n
o
,
b
2
,
e
a
,
s
}
,
{
{
c
1
,
a
1
,
w
,
b
1
}
,
{
c
3
,
a
2
,
s
,
a
1
,
c
2
}
,
{
b
1
,
n
o
,
b
2
}
,
{
b
2
,
e
a
,
a
2
,
c
4
}
}
]
(
*
,
{
{
c
1
_
_
,
a
1
_
}
,
{
a
1
_
,
c
2
_
_
}
,
{
c
3
_
_
,
a
2
_
}
,
{
a
2
_
,
c
4
_
_
}
}
M
o
d
u
l
e
[
{
s
,
b
1
,
b
2
,
e
a
,
w
,
n
o
}
,
{
{
c
1
,
a
1
,
s
,
a
2
,
c
4
}
,
{
b
2
,
e
a
,
a
1
,
c
2
}
,
{
c
3
,
a
2
,
w
,
b
1
}
,
{
b
1
,
n
o
,
b
2
}
}
]
*
)
}
|
>
,
i
n
i
t
,
5
0
]
e
v
o
[
"
E
x
p
r
e
s
s
i
o
n
s
E
v
e
n
t
s
G
r
a
p
h
"
]
e
v
o
[
"
E
v
e
n
t
s
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
]
O
u
t
[
]
=
W
o
l
f
r
a
m
M
o
d
e
l
E
v
o
l
u
t
i
o
n
O
b
j
e
c
t
G
e
n
e
r
a
t
i
o
n
s
:
5
E
v
e
n
t
s
:
7
O
u
t
[
]
=
O
u
t
[
]
=
O
n
e
c
o
u
l
d
a
l
s
o
t
a
k
e
t
h
e
i
n
n
e
r
p
r
o
d
u
c
t
w
i
t
h
t
h
e
b
r
a
v
e
c
t
o
r
t
o
c
o
m
p
u
t
e
t
h
e
v
a
c
u
u
m
-
t
o
-
v
a
c
u
u
m
a
m
p
l
i
t
u
d
e
s
.
T
h
e
s
e
a
m
p
l
i
t
u
d
e
s
a
r
e
i
n
p
o
w
e
r
s
o
f
.
E
a
c
h
e
x
p
r
e
s
s
i
o
n
i
n
t
h
e
f
i
n
a
l
s
t
a
t
e
r
e
p
r
e
s
e
n
t
s
a
n
i
n
d
e
x
c
y
c
l
e
o
f
t
h
e
c
o
l
o
r
d
e
g
r
e
e
o
f
f
r
e
e
d
o
m
a
n
d
c
o
n
t
r
i
b
u
t
e
s
a
f
a
c
t
o
r
o
f
.
T
h
e
q
u
a
r
t
i
c
v
e
r
t
e
x
c
o
n
t
r
i
b
u
t
e
s
a
f
a
c
t
o
r
o
f
.
T
h
u
s
o
n
e
m
a
y
l
o
o
k
a
t
a
n
y
f
i
n
a
l
s
t
a
t
e
a
n
d
o
b
t
a
i
n
t
h
e
a
m
p
l
i
t
u
d
e
o
f
t
h
e
c
o
r
r
e
s
p
o
n
d
i
n
g
p
h
y
s
i
c
a
l
p
r
o
c
e
s
s
.
T
h
e
d
e
p
e
n
d
e
n
c
e
o
f
t
h
e
s
e
v
a
c
u
u
m
a
m
p
l
i
t
u
d
e
s
c
o
r
r
e
s
p
o
n
d
s
t
o
t
h
e
t
o
p
o
l
o
g
i
c
a
l
e
x
p
a
n
s
i
o
n
o
f
s
t
r
i
n
g
s
.
I
n
[
]
:
=
i
n
n
e
r
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
W
o
l
f
r
a
m
M
o
d
e
l
"
]
[
<
|
"
P
a
t
t
e
r
n
R
u
l
e
s
"
{
{
{
c
1
_
_
,
a
1
_
}
,
{
a
2
_
,
c
4
_
_
}
}
M
o
d
u
l
e
[
{
s
}
,
{
{
c
1
,
a
1
,
s
,
a
2
,
c
4
}
}
]
(
*
,
{
{
c
1
_
_
,
a
1
_
}
,
{
a
1
_
,
c
2
_
_
}
,
{
c
3
_
_
,
a
2
_
}
,
{
a
2
_
,
c
4
_
_
}
}
M
o
d
u
l
e
[
{
s
,
b
1
,
b
2
,
e
a
,
w
,
n
o
}
,
{
{
c
1
,
a
1
,
s
,
a
2
,
c
4
}
,
{
b
2
,
e
a
,
a
1
,
c
2
}
,
{
c
3
,
a
2
,
w
,
b
1
}
,
{
b
1
,
n
o
,
b
2
}
}
]
*
)
}
|
>
,
e
v
o
[
1
]
,
1
]
i
n
n
e
r
[
"
E
x
p
r
e
s
s
i
o
n
s
E
v
e
n
t
s
G
r
a
p
h
"
]
i
n
n
e
r
[
"
E
v
e
n
t
s
S
t
a
t
e
s
P
l
o
t
s
L
i
s
t
"
]
O
u
t
[
]
=
W
o
l
f
r
a
m
M
o
d
e
l
E
v
o
l
u
t
i
o
n
O
b
j
e
c
t
G
e
n
e
r
a
t
i
o
n
s
:
1
E
v
e
n
t
s
:
5
O
u
t
[
]
=
O
u
t
[
]
=
I
n
[
]
:
=
i
n
n
e
r
[
"
F
i
n
a
l
S
t
a
t
e
P
l
o
t
"
]
i
n
n
e
r
[
"
F
i
n
a
l
S
t
a
t
e
"
]
/
/
L
e
n
g
t
h
O
u
t
[
]
=
O
u
t
[
]
=
5
Connection to string bits
S
t
r
i
n
g
b
i
t
s
h
a
v
e
a
s
u
p
e
r
-
c
r
e
a
t
i
o
n
o
p
e
r
a
t
o
r
g
i
v
e
n
b
y
w
h
e
r
e
a
r
e
‘
c
o
l
o
r
’
i
n
d
i
c
e
s
a
n
d
t
a
k
e
v
a
l
u
e
s
f
r
o
m
.
i
s
a
G
r
a
s
s
m
a
n
n
n
u
m
b
e
r
,
i
.
e
.
.
T
h
e
s
t
a
t
e
s
p
a
c
e
o
f
s
t
r
i
n
g
b
i
t
s
i
s
t
h
e
n
s
p
a
n
n
e
d
b
y
w
i
t
h
d
e
n
o
t
i
n
g
t
h
e
s
i
t
e
n
u
m
b
e
r
o
n
a
o
n
e
-
d
i
m
e
n
s
i
o
n
a
l
l
a
t
t
i
c
e
.
O
n
e
c
a
n
s
h
o
w
t
h
a
t
t
h
e
l
a
r
g
e
l
i
m
i
t
o
f
a
c
t
i
o
n
t
h
e
H
a
m
i
l
t
o
n
i
a
n
:
o
n
l
o
n
g
(
i
.
e
.
)
,
c
l
o
s
e
d
c
h
a
i
n
s
(
i
.
e
.
s
i
n
g
l
e
t
r
a
c
e
s
t
a
t
e
s
)
o
f
s
t
r
i
n
g
b
i
t
s
r
e
p
r
o
d
u
c
e
s
t
h
e
l
i
g
h
t
c
o
n
e
c
o
r
r
e
s
p
o
n
d
i
n
g
t
o
a
s
u
b
c
r
i
t
i
c
a
l
s
t
r
i
n
g
.
T
h
i
s
s
t
r
i
n
g
h
a
s
o
n
l
y
o
n
e
G
r
a
s
s
m
a
n
n
w
o
r
l
d
s
h
e
e
t
f
i
e
l
d
(
n
o
t
r
a
n
s
v
e
r
s
e
c
o
o
r
d
i
n
a
t
e
s
)
a
n
d
o
n
e
l
o
n
g
i
t
u
d
i
n
a
l
c
o
o
r
d
i
n
a
t
e
,
I
n
t
h
e
c
o
n
t
i
n
u
u
m
l
i
m
i
t
c
h
a
i
n
s
t
h
e
f
o
l
l
o
w
i
n
g
i
d
e
n
t
i
f
i
c
a
t
i
o
n
s
a
r
e
m
a
d
e
:
,
a
n
d
.
T
h
e
a
r
e
(
M
a
j
o
r
a
n
a
-
W
e
y
l
)
s
p
i
n
o
r
s
a
n
d
a
r
e
r
e
l
a
t
e
d
t
o
t
h
e
G
r
a
s
s
m
a
n
n
c
o
o
r
d
i
n
a
t
e
s
a
s
,
a
n
d
Future prospects
1
.
Extend the amplitude calculation developed here to include fermionic excitations. This would require dealing with Grassmann numbers and their anti-commuting properties.
2
.
L
o
o
k
t
o
e
s
t
a
b
l
i
s
h
t
h
e
c
o
r
r
e
s
p
o
n
d
e
n
c
e
w
i
t
h
l
i
g
h
t
c
o
n
e
b
y
a
n
a
l
y
s
i
n
g
t
h
e
s
p
e
c
t
r
u
m
o
f
f
o
r
f
i
n
i
t
e
b
i
t
n
u
m
b
e
r
a
n
d
f
i
n
i
t
e
n
u
m
b
e
r
o
f
c
o
l
o
r
s
.
C
o
m
p
l
e
t
e
p
r
o
j
e
c
t
w
o
r
k
Keywords
◼
String bits
Acknowledgment
Mentor
: Tobias Canavesi
References
◼
Bergman, O., & Thorn, C. B. (January 01, 1995). String bit models for superstring. Physical Review. D, Particles and Fields, 52, 10, 5980.
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.52.5980
POSTED BY:
Sourav Raha
Answer
Mark as an Answer
Reply
|
Flag
Reply to this discussion
in reply to
Add Notebook
Community posts can be styled and formatted using the
Markdown syntax
.
Tag limit exceeded
Note: Only the first five people you tag will receive an email notification; the other tagged names will appear as links to their profiles.
Publish anyway
Cancel
Reply Preview
Attachments
Remove
Add a file to this post
Follow this discussion
or
Discard
Group Abstract
Be respectful. Review our
Community Guidelines
to understand your role and responsibilities.
Community Terms of Use
Feedback
Enable JavaScript to interact with content and submit forms on Wolfram websites.
Learn how »