The first integral returns a function:
In[1]:= P = Integrate[b*(1 - c*g)*Exp[-a*u] + b*(1 - c*g)*g*(1 - Exp[-a*u]) - b*Exp[-a*u], {u, 50, t}]
Out[1]=-15.7623 + 13.5 E^(-0.03 t) + 0.255 t
Whereas the NIntegrate calculation returns a number:
In[2]:= P = NIntegrate[b*(1 - c*g)*Exp[-a*u] + b*(1 - c*g)*g*(1 - Exp[-a*u]) - b*Exp[-a*u], {u, 50, 1000}]
Out[2]:= 467.562
For this reason, your final numerical integration involving P are different from each other.