# Number series that never intersect

Posted 1 month ago
136 Views
|
0 Replies
|
0 Total Likes
|
 Following a rule unleashed by the analysis of the fundamental trigonometrical relation of the non trivial zeros of Riemann, 7 series candidates to OEIS can be found that generates numbers that never intersect with each other: sq=Table[j,{j,10000}] n=Select[sq,IntegerQ,(10000)] a=n/0.148595 b=Sqrt[a^2-n^2] c=Log[b] c1=IntegerPart[c] c2=1 d=FractionalPart[c] dd=b*c d2=FractionalPart[dd] d1=d2+c2+d e=b+d1 ft=IntegerPart[e] v=Select[ft,EvenQ] vv=v+1 vv2=v-1 g=b-d1 h=IntegerPart[g] sq=Table[j,{j,10000}] n=Select[sq,IntegerQ,(10000)] a=n/0.148595 b=Sqrt[a^2-n^2] c=Log[b]*b e=FractionalPart[c] f=b+e g=Log[b]-1 hh=IntegerPart[g] fg=b+e+hh fgh=IntegerPart[fg] jj=IntegerPart[b] Intersection[f,h,hh,vv2,vv] sq=Table[j,{j,10000}] n=Select[sq,IntegerQ,(10000)] a=n/0.148595 b=Sqrt[a^2-n^2] c=Log[b] c1=IntegerPart[c] c2=c1-1 d=FractionalPart[c] dd=b*c d2=FractionalPart[dd] d1=d2+c2+d e=b+d1 e3=e-d1 f2=IntegerPart[e] ff2=IntegerPart[e3] Intersection[ft,h,fgh,vv2,vv,f2,ff2] List[ft] List[h] List[fgh] List[vv2] List[vv] List[f2] List[ff2]