Message Boards Message Boards

GROUPS:

Number series that never intersect

Posted 1 month ago
136 Views
|
0 Replies
|
0 Total Likes
|

Following a rule unleashed by the analysis of the fundamental trigonometrical relation of the non trivial zeros of Riemann, 7 series candidates to OEIS can be found that generates numbers that never intersect with each other:

sq=Table[j,{j,10000}]
n=Select[sq,IntegerQ,(10000)]
a=n/0.148595
b=Sqrt[a^2-n^2]
c=Log[b]
c1=IntegerPart[c]
c2=1
d=FractionalPart[c]
dd=b*c
d2=FractionalPart[dd]
d1=d2+c2+d
e=b+d1
ft=IntegerPart[e]
v=Select[ft,EvenQ]
vv=v+1
vv2=v-1
g=b-d1
h=IntegerPart[g]
sq=Table[j,{j,10000}]
n=Select[sq,IntegerQ,(10000)]
a=n/0.148595
b=Sqrt[a^2-n^2]
c=Log[b]*b
e=FractionalPart[c]
f=b+e
g=Log[b]-1
hh=IntegerPart[g]
fg=b+e+hh
fgh=IntegerPart[fg]
jj=IntegerPart[b]
Intersection[f,h,hh,vv2,vv]
sq=Table[j,{j,10000}]
n=Select[sq,IntegerQ,(10000)]
a=n/0.148595
b=Sqrt[a^2-n^2]
c=Log[b]
c1=IntegerPart[c]
c2=c1-1
d=FractionalPart[c]
dd=b*c
d2=FractionalPart[dd]
d1=d2+c2+d
e=b+d1
e3=e-d1
f2=IntegerPart[e]
ff2=IntegerPart[e3]
Intersection[ft,h,fgh,vv2,vv,f2,ff2]
List[ft]
List[h]
List[fgh]
List[vv2]
List[vv]
List[f2]
List[ff2]
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract