Helical co-ordinates can be considered on a cone or on a cylinder, take a cylinder:
Here one has with slope k
(* \[CurlyPhi] as parametric angle, this gives the arc length, k is \
the slope *)
With[{\[Theta] = 270 \[Degree]},
With[{k = 3/2},
With[{r = 3},
With[{uml = 1},
ParametricPlot3D[{r Cos[\[Theta] + \[CurlyPhi]],
r Sin[\[Theta] + \[CurlyPhi]], (\[CurlyPhi]/(2 \[Pi])) k}, {\
\[CurlyPhi], 0, uml 2 \[Pi]}]
]
]
]
]
ArcLength is clear because the cylinder is developable, but
Clear[k, \[CurlyPhi], x, y, z, r, \[Theta], s]
ArcLength[{r Cos[\[Theta] + \[Phi]],
r Sin[\[Theta] + \[Phi]], (\[Phi]/(2 \[Pi])) k}, {\[Phi],
0, \[CurlyPhi]}]
(Sqrt[k^2 + 4 \[Pi]^2 r^2] \[CurlyPhi])/(2 \[Pi])
So
Clear[\[CurlyPhi]]
\[CurlyPhi] = 2 \[Pi] s/Sqrt[k^2 + 4 \[Pi]^2 r^2];
(* co-ordinate transformation *)
Clear[k, x, y, z, r, \[Theta], s]
x = r Cos[\[Theta] + 2 \[Pi] s/Sqrt[k^2 + 4 \[Pi]^2 r^2]];
y = r Sin[\[Theta] + 2 \[Pi] s/Sqrt[k^2 + 4 \[Pi]^2 r^2]];
z = s k/Sqrt[k^2 + 4 \[Pi]^2 r^2];
Clear[k, x, y, z, r, \[Theta], s]
r = Sqrt[x^2 + y^2] ;
(* \[Theta]=ArcTan[x,y]-2 \[Pi] s/Sqrt[k^2+4 \[Pi]^2 r^2] *)
\[Theta] = ArcTan[x, y] - 2 \[Pi] z/k;
s = Sqrt[k^2 + 4 \[Pi]^2 (x^2 + y^2)] z/k;
Test it a bit
(* k=3/2; {x,y,z}={7,4,8} \[Rule] {r,\[Theta],s}={Sqrt[65],-((32 \
\[Pi])/3)+ArcTan[4/7],16/3 Sqrt[9/4+260 \[Pi]^2]} *)
In[141]:= Clear[x, y, z, \[CurlyPhi]]
{r Cos[\[Theta] + \[CurlyPhi]],
r Sin[\[Theta] + \[CurlyPhi]], (\[CurlyPhi]/(2 \[Pi])) k} /. {r ->
Sqrt[65], \[Theta] -> -((32 \[Pi])/3) +
ArcTan[4/7], \[CurlyPhi] ->
2 \[Pi] (16/3 Sqrt[9/4 + 260 \[Pi]^2])/
Sqrt[(3/2)^2 + 4 \[Pi]^2 65], k -> 3/2}
Out[142]= {7, 4, 8}
base vectore er, eth, es are non-orthogonal, of course
In[194]:= (* non-orthogonal base vectors er, eth, es *)
Clear[er]
er = D[x, r] {1, 0, 0} + D[y, r] {0, 1, 0} + D[z, r] {0, 0, 1}
Out[195]= {Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]] + (
8 \[Pi]^3 r^2 s Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/(k^2 + 4 \[Pi]^2 r^2)^(
3/2), -((8 \[Pi]^3 r^2 s Cos[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/(k^2 + 4 \[Pi]^2 r^2)^(3/2)) +
Sin[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]], -((
4 k \[Pi]^2 r s)/(k^2 + 4 \[Pi]^2 r^2)^(3/2))}
In[196]:= Clear[eth]
eth = D[x, \[Theta]] {1, 0, 0} + D[y, \[Theta]] {0, 1, 0} +
D[z, \[Theta]] {0, 0, 1}
Out[197]= {-r Sin[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]],
r Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]], 0}
In[198]:= Clear[es]
es = D[x, s] {1, 0, 0} + D[y, s] {0, 1, 0} + D[z, s] {0, 0, 1}
Out[199]= {-((
2 \[Pi] r Sin[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/
Sqrt[k^2 + 4 \[Pi]^2 r^2]), (
2 \[Pi] r Cos[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/Sqrt[
k^2 + 4 \[Pi]^2 r^2], k/Sqrt[k^2 + 4 \[Pi]^2 r^2]}
In[200]:= er . eth // Simplify
Out[200]= -((8 \[Pi]^3 r^3 s)/(k^2 + 4 \[Pi]^2 r^2)^(3/2))
In[201]:= er . es // Simplify
Out[201]= -((4 \[Pi]^2 r s)/(k^2 + 4 \[Pi]^2 r^2))
In[202]:= es . eth // Simplify
Out[202]= (2 \[Pi] r^2)/Sqrt[k^2 + 4 \[Pi]^2 r^2]
from this one has the jacobi determinant
(* {er,eth,es} = jac . {e1,e2,e3} *)
In[205]:= Clear[jac]
jac = {{Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]] + (
8 \[Pi]^3 r^2 s Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/(k^2 + 4 \[Pi]^2 r^2)^(
3/2), -((
8 \[Pi]^3 r^2 s Cos[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/(k^2 + 4 \[Pi]^2 r^2)^(
3/2)) + Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]], -((
4 k \[Pi]^2 r s)/(k^2 + 4 \[Pi]^2 r^2)^(
3/2))}, {-r Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]],
r Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]],
0}, {-((2 \[Pi] r Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/Sqrt[
k^2 + 4 \[Pi]^2 r^2]), (
2 \[Pi] r Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/
Sqrt[k^2 + 4 \[Pi]^2 r^2], k/Sqrt[k^2 + 4 \[Pi]^2 r^2]}};
In[211]:= (* {e1,e2,e3}=ijac . {er, eth, es} *)
ijac = Inverse[jac] // Simplify
Out[211]= {{Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]], -(
Sin[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]]/r), (
4 \[Pi]^2 r s Cos[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/(
k^2 + 4 \[Pi]^2 r^2)}, {Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]],
Cos[(2 \[Pi] s)/Sqrt[k^2 + 4 \[Pi]^2 r^2] + \[Theta]]/r, (
4 \[Pi]^2 r s Sin[(2 \[Pi] s)/Sqrt[
k^2 + 4 \[Pi]^2 r^2] + \[Theta]])/(
k^2 + 4 \[Pi]^2 r^2)}, {0, -((2 \[Pi])/k), Sqrt[
k^2 + 4 \[Pi]^2 r^2]/k}}
and now the gradient transforms by chain-rule and base vector transformation
In[292]:= (* gradient: chain rule and base vector transformation *)
Clear[er, eth, es, x, y, z]
(* grad f = *)
Collect[((Defer[D[f, r]] D[r, x] +
Defer[D[f, \[Theta]]] D[\[Theta], x] +
Defer[D[f, s]] D[s, x]) ijac[[1]] . {er, eth, es}
+ (Defer[D[f, r]] D[r, y] + Defer[D[f, \[Theta]]] D[\[Theta], y] +
Defer[D[f, s]] D[s, y]) ijac[[2]] . {er, eth, es}
+ (Defer[D[f, r]] D[r, z] + Defer[D[f, \[Theta]]] D[\[Theta], z] +
Defer[D[f, s]] D[s, z]) ijac[[3]] . {er, eth, es}) //
FullSimplify, {er, eth, es}]
Out[293]= er (\!\(
\*SubscriptBox[\(\[PartialD]\), \(r\)]f\) + (
4 \[Pi]^2 Sqrt[x^2 + y^2] z \!\(
\*SubscriptBox[\(\[PartialD]\), \(s\)]f\))/(
k Sqrt[k^2 + 4 \[Pi]^2 (x^2 + y^2)])) +
eth (-((2 \[Pi] Sqrt[k^2 + 4 \[Pi]^2 (x^2 + y^2)] \!\(
\*SubscriptBox[\(\[PartialD]\), \(s\)]f\))/
k^2) + ((4 \[Pi]^2)/k^2 + 1/(x^2 + y^2)) \!\(
\*SubscriptBox[\(\[PartialD]\), \(\[Theta]\)]f\)) +
es ((4 \[Pi]^2 Sqrt[x^2 + y^2] z \!\(
\*SubscriptBox[\(\[PartialD]\), \(r\)]f\))/(
k Sqrt[k^2 +
4 \[Pi]^2 (x^2 + y^2)]) + (((k^2 + 4 \[Pi]^2 (x^2 + y^2))^2 +
16 \[Pi]^4 (x^2 + y^2) z^2) \!\(
\*SubscriptBox[\(\[PartialD]\), \(s\)]f\))/(
k^4 + 4 k^2 \[Pi]^2 (x^2 + y^2)) - (
2 \[Pi] Sqrt[k^2 + 4 \[Pi]^2 (x^2 + y^2)] \!\(
\*SubscriptBox[\(\[PartialD]\), \(\[Theta]\)]f\))/k^2)
In[296]:= (* with other words *)
Clear[r]
%293 /. {x^2 + y^2 -> r^2, Sqrt[x^2 + y^2] -> r}
Out[297]= er (\!\(
\*SubscriptBox[\(\[PartialD]\), \(r\)]f\) + (4 \[Pi]^2 r z \!\(
\*SubscriptBox[\(\[PartialD]\), \(s\)]f\))/(
k Sqrt[k^2 + 4 \[Pi]^2 r^2])) +
eth (-((2 \[Pi] Sqrt[k^2 + 4 \[Pi]^2 r^2] \!\(
\*SubscriptBox[\(\[PartialD]\), \(s\)]f\))/
k^2) + ((4 \[Pi]^2)/k^2 + 1/r^2) \!\(
\*SubscriptBox[\(\[PartialD]\), \(\[Theta]\)]f\)) +
es ((4 \[Pi]^2 r z \!\(
\*SubscriptBox[\(\[PartialD]\), \(r\)]f\))/(
k Sqrt[k^2 +
4 \[Pi]^2 r^2]) + (((k^2 + 4 \[Pi]^2 r^2)^2 +
16 \[Pi]^4 r^2 z^2) \!\(
\*SubscriptBox[\(\[PartialD]\), \(s\)]f\))/(
k^4 + 4 k^2 \[Pi]^2 r^2) - (2 \[Pi] Sqrt[k^2 + 4 \[Pi]^2 r^2] \!\(
\*SubscriptBox[\(\[PartialD]\), \(\[Theta]\)]f\))/k^2)
because still the subscript boxes appear in a code snippet, a picture:
Attachments: